• Title/Summary/Keyword: Survival proteins

Search Result 406, Processing Time 0.025 seconds

Iron Starvation-Induced Proteomic Changes in Anabaena (Nostoc) sp. PCC 7120: Exploring Survival Strategy

  • Narayan, Om Prakash;Kumari, Nidhi;Rai, Lal Chand
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.136-146
    • /
    • 2011
  • This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the $7^{th}$ day, and a decline in expression from the $15^{th}$ day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the $N_2$-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.

Identification and Characterization of Calcineurin Targets in Cryptococcus neoformans

  • Park, Hee-Soo;Heitman, Joseph;Cardenas, Maria E.
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.17-17
    • /
    • 2016
  • Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic $TiO_2$ enrichment and quantitative mass spectrometry. The identified targets include the zinc finger transcription factor Crz1 and proteins whose functions are linked to P-bodies/stress granules (PBs/SGs) and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and localization and transcriptional activity of Crz1 are controlled by calcineurin. Several of the calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, and are required for survival at high temperature and for virulence. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings propose that calcineurin controls thermal stress and virulence at the transcriptional level via Crz1 and post-transcriptionally by regulating target factors involved in mRNA metabolism.

  • PDF

Synergistic Enhancement of Paclitaxel-Induced Inhibition of Cell Growth by Metformin in Melanoma Cells

  • Ko, Gihyun;Kim, Taehyung;Ko, Eunjeong;Park, Deokbae;Lee, Youngki
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.119-128
    • /
    • 2019
  • Melanoma is one of the most aggressive and treatment-resistant malignancies. Antidiabetic drug metformin has been reported to inhibit cell proliferation and metastasis in many cancers, including melanoma. Metformin suppresses the mammalian target of rapamycin (mTOR) and our previous study showed that it also inhibits the activity of extracellular signal-regulated kinase (ERK). Paclitaxel is currently prescribed for treatment of melanoma. However, paclitaxel induced the activation of ERK/mitogen-activated protein kinase (MAPK) pathway, a cell signaling pathway implicated in cell survival and proliferation. Therefore, we reasoned that combined treatment of paclitaxel with metformin could be more effective in the suppression of cell proliferation than treatment of paclitaxel alone. Here, we investigated the combinatory effect of paclitaxel and metformin on the cell survival in SK-MEL-28 melanoma cell line. Our study shows that the combination of paclitaxel and metformin has synergistic effect on cell survival and suppresses the expression of proteins involved in cancer metastasis. These findings suggest that the combination of paclitaxel and metformin can be a possible therapeutic option for treatment of melanoma.

Increased Expression of CTGF in Periodontitis Tissue and Its Role for Enhanced Mature Osteoclast Survival (치주염 조직에서 발현이 증가하는 CTGF에 의한 파골세포 생존 증가)

  • Han, Hye-Yeon;Park, Jong-Cheol;Ryu, Mi Heon;Bae, Moon-Kyoung;Kim, Hyung Joon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.41 no.4
    • /
    • pp.155-162
    • /
    • 2017
  • Connective tissue growth factor (CTGF, CCN2) is one of the multi-functional secreted proteins which belong to CCN family of cysteine-rich growth factors. CTGF is known to have pivotal roles in embryonic endochondral ossification but its role in relevance to periodontitis is never been determined. To identify new molecular mediators associated with periodontitis-induced bone resorption, we have analyzed publicly available GEO database and found the markedly augmented CTGF mRNA expression in periodontitis gingival tissues. The existence of CTGF significantly enhanced mature osteoclasts survival which accompanied by reduction in TUNEL-positive nuclei and PARP cleavage. These results may provide another line of evidence the CTGF mediated prolonged osteoclast survival and subsequent increased bone resorption in the periodontitis patients.

Analysis of the Correlation between Expressions of HSP90α, HSP90β, and GRP94, and the Clinicopathologic Characteristics in Tissues of Non-Small Cell Lung Cancer Patients (비소세포 폐암 환자 조직에서 Hsp90α, Hsp90β, GRP94의 발현과 임상병리학적 특성과의 상관관계 분석)

  • Kim, Mi Kyeong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.460-469
    • /
    • 2017
  • Heat shock proteins (HSPs) are induced as a self-defense mechanism of cells when exposed to various external stresses, such as high fever, infection, free radicals, and heavy metals. They affect the prognosis in the process of tumor formation. HSP is classified into four families: HSP27, HSP60, HSP90, and HSP100, depending on molecular weight. Heat shock protein 90 (HSP90), a molecular chaperone, plays an important role in the cellular protection against various stressful stimuli and in the regulation of cell cycle progression and apoptosis. In the present study, we assessed the differential expression of HSP90 family proteins in non-small cell lung cancer (NSCLC), and the correlation of their expression levels with clinicopathologic factors and patient survival rates. The result of this study can be summarized as follows; $HSP90{\alpha}$ showed higher expression in patients with no lymphovascular invasion (p=0.014). $HSP90{\beta}$ showed a higher expression of squamous cell carcinoma (p=0.003), and an over expression of glucose-related protein (GRP94) was significantly associated with poor differentiation (p=0.048). However, none of the HSP90 proteins showed a significant association with the survival status in patients with NSCLC. This study also indicates that $HSP90{\alpha}$ might contribute more to the carcinogenesis of NSCLC than $HSP90{\beta}$, and GRP94 and isoform selectivity should be considered when HSP90 inhibitors are studied or utilized in the treatment of NSCLC.

Effects of Differential Distribution of Microvessel Density, Possibly Regulated by miR-374a, on Breast Cancer Prognosis

  • Li, Jian-Yi;Zhang, Yang;Zhang, Wen-Hai;Jia, Shi;Kang, Ye;Tian, Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1715-1720
    • /
    • 2013
  • Background: The discovery that microRNAs (miRNAs) regulate proliferation, invasion and metastasis provides a principal molecular basis of tumor heterogeneity. Microvessel distribution is an important characteristic of solid tumors, with significant hypoxia occurring in the center of tumors with low blood flow. The distribution of miR-374a in breast tumors was examined as a factor likely to be important in breast cancer progression. Methods: Breast tissue samples from 40 patients with breast cancer were classified into two groups: a highly invasive and metastatic group (HIMG) and a low-invasive and metastatic Group (LIMG). Samples were collected from the center and edge of each tumor. In each group, six specimens were examined by microRNA array, and the remaining 14 specimens were used for real-time RT-qPCR, Western blot and immunohistochemical analyses. Correlation analysis was performed for the miRNAs and target proteins. Follow-up was carried out during 28 months to 68 months after surgery, and survival data were analyzed. Results: In the LIMG, the relative content of miR-374a was lower in the center of the tumor than at its edge; in the HIMG, it was lower at the edge of the tumor, and miR-374a levels were lower in breast cancer tissues than in normal tissues. There was no difference between VEGF-A and VCAM-1 mRNA levels at the edge and center of the tumor; however, we observed a significant difference between VEGF-A and VCAM-1 protein expression levels in these two regions. There was a negative correlation between miR-374a and target protein levels. The microvessel density (MVD) was lower in the center of the tumor than at its edge in HIMG, but the LIMG vessels were uniformly distributed. There was a significant positive correlation between MVD and the number of lymph node metastases (Pearson correlation, r=0.912, P<0.01). The median follow-up time was 48.5 months. LIMG had higher rate of disease-free survival (100%, P=0.013) and longer median survival time (66 months) than HIMG, which had a lower rate of 75% and shorter median survival time (54 months). Conclusions: Our data demonstrated miR-374a to be differentially distributed in breast cancer; VEGF-A and VCAM-1 mRNA had coincident distribution, and the distribution of teh respective proteins was uneven and opposite to that for the miR-374a. These data might explain the differences in the distribution of MVD in breast cancer and variation in breast cancer prognosis.

Expression of Heregulin and ErbB Family Proteins in Gastric Adenocarcinomas: Correlation with Clinopathologic Prognostic Factors (위선암에서 Heregulin과 ErbB Family 단백 발현과 임상.병리학적 예후인자와의 상관관계)

  • Yoo, Chang-Hak;Lee, Ju-Han;Choi, Jong-Sang
    • Journal of Gastric Cancer
    • /
    • v.6 no.3
    • /
    • pp.181-188
    • /
    • 2006
  • Purpose: Heregulin is a natural ligand for erbB3 and erbB4. However, very little is known about their roles in the gastric cancer This retrospective study was performed to evaluate the frequencies of heregulin and erbB family protein expression and to compare their expressions with clinicopathologic parameters. Materials and Methods: Immunohistochemical expressions of heregulin and erbB family proteins were examined with tissue micro-array slides. A total of 251 gastric adenocarcinomas were classified as early cancers and advanced cancers and as having and not having lymph node metastases. Results: The positive rates of the heregulin, erbB1, erbB2, erbB3, and erbB4 protein stainings were 64%, 68%, 6%, 88%, and 76%, respectively. Intestinal type gastric adenocarcinomas showed higher expression of heregulin, erbB2, erbB3, and erbB4 proteins. Heregulin and erbB4 proteins showed lower expressions in advanced gastric carcinomas. However, erbB2 protein showed higher expression in advanced gastric carcinomas. The protein expressions of heregulin and erbB family proteins showed no relationship with survival rate. Co-expression groups of heregulin and erbB3 proteins or heregulin and erbB4 proteins showed higher expressions in intestinal type adenocarcinomas and early gastric carcinomas. Conclusion: Heregulin, erbB3, and erbB4 proteins may play a role in the early stage of adenocarcinomas.

  • PDF

The functions of mTOR in ischemic diseases

  • Hwang, Seo-Kyoung;Kim, Hyung-Hwan
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.506-511
    • /
    • 2011
  • Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/$G{\beta}L$ and PRAS40. mTORC2 contains mTOR, rictor, mLST8/$G{\beta}L$, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.

Cold Shock Response of Leuconostoc mesenteroides SY1 Isolated from Kimchi

  • KIM JONG HWAN;PARK JAE-YONG;JEONG SEON-JU;CHUN JIYEON;KIM JEONG HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.831-837
    • /
    • 2005
  • Low-temperature adaptation and cryoprotection were studied in Leuconostoc mesenteroides SYl, a strain isolated from Kimchi. L. mesenteroides SY1 cells grown in exponential growth phase at $30^{\circ}C$ were exposed to $15^{\circ}C,\;10^{\circ}C$, and $5^{\circ}C$ for 2, 4, and 6 h, respectively, and then frozen at $- 70^{\circ}C$ for 24 h. Survival ratio was measured after the cells were thawed. The freezing-thawing cycles were repeated four times. Preadapted cells survived better than non-adapted control cells, and the highest survival ratio ($96\%$) was observed for cells preadapted for 2 h at $5^{\circ}C$, whereas control cells showed only $22\%$. The 2D gel showed that two proteins (spots A and B) were induced in cells preadapted at lower temperatures. Spots A and B have the same molecular weight (7 kDa), but the pI was 4.6 for spot A and 4.3 for spot B. The first 29 and 15 amino acid sequences from spots A and B were determined, and they were identical, except for one amino acid. A csp gene was cloned, and nucleotide sequencing confirmed that the gene encoded spot A cold shock protein.

Growth inhibition in head and neck cancer cell lines by gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (두경부암 세포주에서 상피성장인자수용체 타이로신 카이네이즈 억제제인 gefitinib의 성장억제에 관한 연구)

  • Song, Seung-Il;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.287-293
    • /
    • 2009
  • Cell survival is the result of a balance between programmed cell death and cellular proliferation. Cell membrane receptors and their associated signal transducing proteins control these processes. Of the numerous receptors and signaling proteins, epidermal growth factor receptor (EGFR) is one of the most important receptors involved in signaling pathways implicated in the proliferation and survival of cancer cells. EGFR is often highly expressed in human tumors including oral squamous cell carcinomas, and there is increasing evidence that high expression of EGFR is correlated with poor clinical outcome of common human cancers. Therefore, we examined the antiproliferative activity of gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in head and neck cancer cell lines. SCC-9, KB cells were cultured and growth inhibition activity of gefitinib was measured with MTT assay. To study influence of gefitinib in cell cycle, we performed cell cycle analysis with flow cytometry. Western blot was done to elucidate the expression of EGFR in cell lines and phosphorylation of EGFR and downstream kinase protein, Erk and Akt. Significant growth inhibition was observed in SCC-9 cells in contrast with KB cells. Also, flow cytometric analysis showed G1 phase arrest only in SCC-9 cells. In Western blot analysis for investigation of EGFR expression and downstream molecule phosphorylation, gefitinib suppressed phosphorylation of EGFR and downstream protein kinase Erk, Akt in SCC-9. However, in EGFR positive KB cells, weak expression of active form of Erk and Akt and no inhibitory activity of phosphorylation in Erk and Akt was observed. The antiproliferative activity of gefitinib was not correlated with EGFR expression and some possibility of phosphorylation of Erk and Akt as a predictive factor of gefitinib response was emerged. Further investigations on more reliable predictive factor indicating gefitinib response are awaited to be useful gefitinib treatment in head and neck cancer patients.