The objective of this research was to develop a rural settlement demand model to analyze the determinants of settlement demand of urban residents. The point aimed at from model development was deriving stated preference of potential consumers towards rural settlement through setting a hypothetical market, and using settlement subsidy as a surrogate variable for price in the demand model. The adequate demand model deducted from hypothetical market data was derived from the basis of Hanemann's utility difference theory. In the rural settlement demand model, willingness to accept was expressed by a function of settlement subsidy. Data utilized in the analysis was collected from surveys of households nationwide. According to inferred results of the demand model, settlement subsidy had a significant influence on increasing demand for rural settlement. A significant common element was found among variables affecting demand increase through demand curve shift. The majority group of those with high rural settlement demand sought agricultural activity as their main motive, due to harsh urban environments aggravated by unstable job market conditions. Subsequently, restriction of income opportunities in rural areas does not produce an entrance barrier for potential rural settlers. Moreover, this argument could be supported by the common trend of those with high rural settlement demand generally tending to have low incomes. Due to such characteristics of concerned groups of rural settlement demand, they tended to react susceptibly to the subsidy provided by the government and local autonomous entities.
One of the important applications for business-to-business electronic commerce is in procurement and inventory management using electronic data interchange(EDI). Using online catalogs and approved supplier lists, firms can easily create requisitions and purchasing documents. The emerging trend in EDI technology is changed from VAN(Value Added Network) based EDI to XML based EDI. This paper intends to suggest a component-based XML/EDI system using Unified Modeling Language(UML), as an application system for automobile part industry. Applying component based XML/EDI systems designed with UML methodology, we analyzed the workflow and the document on procurement process between trading partners and implemented a prototype of efficient XML/EDI system, as a surrogate of existing VAN/EDI. The result of applying object-oriented CBD(Component Based Development) technique is to minimize the risk of life cycle and facilitate the reuse of software as mentioned to limitation of information engineering methodology. It enables the interoperability with corporate legacy systems such as ERP(Enterprise Resource Planning), SCM(Supply Chain Management). This system proposes a solution to apply analysis phase and design phase in implementation of XML/EDI system. The implementation of XML/EDI system using CBD shows the ease of use in software reuse and the interoperability with corporate internal information system. The purchasing department with XML/EDI system can electronically communicate purchase orders, delivery schedules to external suppliers and interoperate with other application systems.
This paper presents a number of verification case studies for a recently developed sensitivity/uncertainty code package. The code package, ROMUSE (Reduced Order Modeling based Uncertainty/Sensitivity Estimator) is an effort to provide an analysis tool to be used in conjunction with reactor core simulators, in particular the Virtual Environment for Reactor Applications (VERA) core simulator. ROMUSE has been written in C++ and is currently capable of performing various types of parameter perturbations and associated sensitivity analysis, uncertainty quantification, surrogate model construction and subspace analysis. The current version 2.0 has the capability to interface with the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) code, which gives ROMUSE access to the various algorithms implemented within DAKOTA, most importantly model calibration. The verification study is performed via two basic problems and two reactor physics models. The first problem is used to verify the ROMUSE single physics gradient-based range finding algorithm capability using an abstract quadratic model. The second problem is the Brusselator problem, which is a coupled problem representative of multi-physics problems. This problem is used to test the capability of constructing surrogates via ROMUSE-DAKOTA. Finally, light water reactor pin cell and sodium-cooled fast reactor fuel assembly problems are simulated via SCALE 6.1 to test ROMUSE capability for uncertainty quantification and sensitivity analysis purposes.
Montoya, Miguel Cid;Nieto, Felix;Hernandez, Santiago
Wind and Structures
/
v.32
no.4
/
pp.355-369
/
2021
Shape optimization of tall buildings is an efficient approach to mitigate wind-induced effects. Several studies have demonstrated the potential of shape modifications to improve the building's aerodynamic properties. On the other hand, it is well-known that the cross-section geometry has a direct impact in the floor area availability and subsequently in the building's profitability. Hence, it is of interest for the designers to find the balance between these two design criteria that may require contradictory design strategies. This study proposes a surrogate-based multi-objective optimization framework to tackle this design problem. Closed-form equations provided by the Eurocode are used to obtain the wind-induced responses for several wind directions, seeking to develop an industry-oriented approach. CFD-based surrogates emulate the aerodynamic response of the building cross-section, using as input parameters the cross-section geometry and the wind angle of attack. The definition of the building's modified plan shapes is done adopting the reduced basis approach, advancing the current strategies currently adopted in aerodynamic optimization of civil engineering structures. The multi-objective optimization problem is solved with both the classical weighted Sum Method and the Weighted Min-Max approach, which enables obtaining the complete Pareto front in both convex and non-convex regions. Two application examples are presented in this study to demonstrate the feasibility of the proposed strategy, which permits the identification of Pareto optima from which the designer can choose the most adequate design balancing profitability and occupant comfort.
Journal of the Microelectronics and Packaging Society
/
v.31
no.3
/
pp.50-57
/
2024
Recently, applying a machine learning to surrogate modeling for rapid optimization of complex designs have been widely researched. Once trained, the machine learning surrogate model can predict similar outputs to Finite Element Analysis (FEA) simulations but require significantly less computing resources. In addition, combined with optimization methodologies, it can identify optimal design variable with less time requirement compared to iterative simulation. This study proposes a Deep Neural Network (DNN) model with Bayesian Optimization (BO) approach for efficiently searching the optimal design variables to minimize the warpage of electronic package. The DNN model was trained by using design variable-warpage dataset from FEA simulation, and the Bayesian optimization was applied to find the optimal design variables which minimizing the warpage. The suggested DNN + BO model shows over 99% consistency compared to actual simulation results, while only require 15 second to identify optimal design variable, which reducing the optimization time by more than 57% compared to FEA simulation.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.50
no.3
/
pp.147-155
/
2022
The accumulated ice and snow during the operation of aircraft and railway vehicles can degrade aerodynamic performance or damage the major components of vehicles. Therefore, it is crucial to predict the temporal growth of ice for operational safety. Numerical simulation of ice is widely used owing to the fact that it is economically cheaper and free from similarity problems compared to experimental methods. However, numerical simulation of ice generally divides the analysis into multi-step and assumes the quasi-steady assumption that considers every time step as steady state. Although this method enables efficient analysis, it has a disadvantage in that it cannot track continuous ice evolution. The purpose of this study is to construct a surrogate model that can predict the temporal evolution of ice shape using reduced-order modeling. Reduced-order modeling technique was validated for various ice shape generated under 100 different icing conditions, and the effect of the number of training data and the icing conditions on the prediction error of model was analyzed.
리튬이온 배터리의 상태를 모니터링 하는 방법에 있어서, 대표적으로 배터리의 충전 상태(SOC)와 배터리의 건강 상태(SOH)를 추정하여 상태 지표로 사용된다. 본 연구에서는 리튬 이온 배터리의 상태 지표를 위한 용량 정보의 추정을 데이터 기반의 근사 모델을 이용하여 수행하였다. 다양한 근사 모델링 방법을 적용하여 추정되는 용량 정보를 비교하고, 모델링 방법에 따른 용량 추정 성능을 확인하였다. 또한, 이를 바탕으로 리튬이온 배터리의 용량을 예측하고 예측 성능을 분석하였다. 본 연구를 통하여 근사모델을 이용하는 경우, 리튬이온 배터리의 용량 추정은 물론 예측을 수행하는 방법으로서의 활용 가능성을 확인하였으며, 또한 제안하는 방법을 이용하여 보유하고 있는 모니터링 데이터를 활용하여 리튬이온 배터리의 성능을 평가하는데 있어 효과적으로 활용될 수 있을 것으로 판단된다.
International Journal of Fluid Machinery and Systems
/
v.3
no.1
/
pp.29-38
/
2010
This paper presents a procedure for the design optimization of a centrifugal compressor. The centrifugal compressor consists of a centrifugal impeller, vaneless diffuser and volute. And, optimization techniques based on the radial basis neural network method are used to optimize the impeller of a centrifugal compressor. The Latin-hypercube sampling of design-of-experiments is used to generate the thirty design points within design spaces. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the objective function of the total-to-total pressure ratio. Four variables defining the impeller hub and shroud contours are selected as design variables in this optimization. The results of optimization show that the total-to-total pressure ratio of the optimized shape at the design flow coefficient is enhanced by 2.46% and the total-to-total pressure ratios at the off-design points are also improved significantly by the design optimization.
Kang Jin;Lee Jong-Mun;Kang Jung-Ho;Park Hee-Chun;Park Young-Chul
Journal of the Korean Society for Precision Engineering
/
v.23
no.8
s.185
/
pp.119-126
/
2006
Kriging model is widely used as design DACE(analysis and computer experiments) model in the field of engineering design to accomplish computationally feasible design optimization. In this paper, the optimization of gate valve was performed using Kriging based approximation model. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. In addition, we describe the definition, the prediction function and the algorithm of Kriging method and examine the accuracy of Kriging by using validation method.
Pore-scale reactive transport modeling is a powerful tool used to analyze micro-scale processes where fluid flow and geochemical reactions occur. Despite its capability to examine complex hydrological and geochemical system behavior, the high computational demands for these simulations present a significant limitation. To overcome this challenge, this study evaluated artificial neural network (ANN)-based surrogate models to replace geochemical reaction calculations, which consume the majority of computational time in reactive transport simulations. The study considered two ANN models: a combined model (CM) that simultaneously accounts for mineral dissolution/precipitation and solute adsorption reactions, and an independent model (IM) that treats these reactions independently. The performance of these models was compared using metrics, including mean squared error (MSE), coefficient of determination (R2), and mass balance errors. Results indicate that IM demonstrates superior accuracy compared to CM. This finding suggests that instead of constructing a single complex model for the entire geochemical reaction network, pore-scale geochemical reactions can be effectively replaced by combining individual neural network models trained for specific reactions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.