DOI QR코드

DOI QR Code

Temporal Prediction of Ice Accretion Using Reduced-order Modeling

차원축소모델을 활용한 시간에 따른 착빙 형상 예측 연구

  • Kang, Yu-Eop (Department of Aerospace Engineering, Seoul National University) ;
  • Yee, Kwanjung (Institute of Advanced Aerospace Technology, Seoul National University)
  • Received : 2021.11.09
  • Accepted : 2022.02.08
  • Published : 2022.03.01

Abstract

The accumulated ice and snow during the operation of aircraft and railway vehicles can degrade aerodynamic performance or damage the major components of vehicles. Therefore, it is crucial to predict the temporal growth of ice for operational safety. Numerical simulation of ice is widely used owing to the fact that it is economically cheaper and free from similarity problems compared to experimental methods. However, numerical simulation of ice generally divides the analysis into multi-step and assumes the quasi-steady assumption that considers every time step as steady state. Although this method enables efficient analysis, it has a disadvantage in that it cannot track continuous ice evolution. The purpose of this study is to construct a surrogate model that can predict the temporal evolution of ice shape using reduced-order modeling. Reduced-order modeling technique was validated for various ice shape generated under 100 different icing conditions, and the effect of the number of training data and the icing conditions on the prediction error of model was analyzed.

항공기 및 철도차량 운용 중 발생하는 착빙 및 착설 현상은 공력 성능 감소와 주요 부품의 파손을 야기하기 때문에 시간에 따른 얼음 증식을 예측하는 것이 운용 안전 측면에서 매우 중요하다. 결빙수치해석은 실험적 방법에 비해 경제적으로 저렴하고 상사성 문제로부터 자유롭다는 점에서 결빙 형상을 예측하기 위한 수단으로 널리 사용되고 있다. 그러나 결빙수치해석은 착빙노출시간을 multi-step으로 나누어 매 단계별로 정상상태를 가정하는 준정상상태(quasi-steady) 가정을 이용한다. 이러한 방법은 효율적인 해석이 가능하지만 연속적인 결빙 형상을 얻지 못한다는 단점을 가지고 있다. 본 연구에서는 차원축소기법을 활용하여 결빙 형상 데이터를 보간함으로써 시간에 따른 결빙 형상을 연속적으로 예측할 수 있는 모델을 만드는 것을 목적으로 한다. 서로 다른 100개의 결빙 조건에서 형성된 결빙 데이터에 대하여 차원축소모델을 적용하였으며, 학습 데이터의 수와 결빙 조건이 차원축소모델의 예측 오차에 미치는 영향을 분석하였다.

Keywords

Acknowledgement

본 연구는 국토교통부의 재원으로 국토교통과학기술진흥원 철도기술연구사업(22RTRP-B146019-05)의 지원으로 작성되었습니다.

References

  1. Son, C., Oh, S. and Yee, K., "Ice Accretion on Helicopter Fuselage considering Rotor-wake Effects," Journal of Aircraft, Vol. 54, No. 2, 2017, pp. 500~518. https://doi.org/10.2514/1.C033830
  2. Son, C. and Yee, K., "Procedure for Determining Operation Limits of High-altitude Long-endurance Aircraft under Icing Conditions," Journal of Aircraft, Vol. 55, No. 1, 2018, pp. 294~309. https://doi.org/10.2514/1.C034490
  3. Min, S. and Yee, K., "New Roughnessinduced Transition Model for Simulation Ice Accretion on Airfoils," AIAA Journal, Vol. 59, No. 1, 2021, pp. 250~262. https://doi.org/10.2514/1.J059222
  4. Potapczuk, M. G., "Aircraft Icing Research at NASA Glenn Research Center," Journal of Aerospace Engineering, Vol. 26, No. 2, 2013 pp. 260~276. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000322
  5. Shin, J. and Thomas, B., "Results of an Icing Test on a NACA 0012 Airfoil in the NASA Lewis Icing Research Tunnel," Proceeding of 30th Aerospace Sciences Meeting and Exhibit, 1992.
  6. Bishop, C. M., Pattern Recognition and Machine Learning, Springer, New York, 2006.
  7. Wright, G. B., Radial Basis Function Interpolation: Numerical and Analytical Developments, University of Colorado at Boulder, 2003.
  8. Jeong, S., Murayama, M. and Yamamoto, K., "Efficient Optimization Design Method using Kriging Model," Journal of Aircraft, Vol. 42, No. 2, 2005, pp. 413~420. https://doi.org/10.2514/1.6386
  9. Simpson, T. W., Mauery, T. M., Korte, J. J. and Mistree, F., "Kriging Models for Global Approximation in Simulation-based Multidisciplinary Design Optimization," AIAA Journal, Vol. 39, No. 12, 2001, pp. 2233~2241. https://doi.org/10.2514/2.1234
  10. Martin, J. D. and Simpson, T. W., "Use of Kriging Models to Approximate Deterministic Computer Models," AIAA Journal, Vol. 43, No. 4, 2005, pp. 853~863. https://doi.org/10.2514/1.8650
  11. Sirovich, L., "Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures," Quaterly of Applied Mathmatics," Vol. 45, No. 3, 1987, pp. 561~571.
  12. Guo, M. and Hesthaven, J. S., "Data-driven Reduced Order Modeling for Time-dependent Problems," Computer Methods in Applied Mechanics and Engineering, Vol. 345, 2019, pp. 75~99. https://doi.org/10.1016/j.cma.2018.10.029
  13. Xiao, D., Yang, P., Fang, F., Xiang, J., Pain, C. C. and Navon, I. M., "Non-intrusive Reduced Order Modelling of Fluid-structure Interactions," Computer Methods in Applied Mechanics and Engineering, Vol. 303, 2016, pp. 35~54. https://doi.org/10.1016/j.cma.2015.12.029
  14. Audouze, C., De Vuyst, F. and Nair, P. B., "Reduced-Order Modeling of Parameterized PDEs using Time-space-Parameter Principal Component Analysis," International Journal for Numerical Methods in Engineering, Vol. 80, No. 8, 2009, pp. 1025~1057. https://doi.org/10.1002/nme.2540
  15. Jung, S. K., Shin, S., Myong, R. S. and Cho, T. H., "An Efficient CFD-based Method for Aircraft Icing Simulation using a Reduced Order Model," Journal of Mechanical Science and Technology, Vol. 25, No. 3, 2011, pp. 703~711. https://doi.org/10.1007/s12206-011-0118-4
  16. Fossati, M. and Habshi W. G., "Multiparameter Analysis of Aero-icing Problems using Proper Orthogonal Decomposition and Multidimensional Interpolation," AIAA Journal, Vol. 51, No. 4, 2013, pp. 946~960. https://doi.org/10.2514/1.J051877
  17. Zhan, Z., Habashi, W. G. and Fossati, M., "Local Reduced-order Modeling and Iterative Sampling for Parametric Analysis of Aero-icing Problems," AIAA Journal, Vol. 53, No. 8, 2015, pp. 2174~2185. https://doi.org/10.2514/1.J053654
  18. Zhan, Z., Habashi, W. G. and Fossati, M., "Real-Time Regional Jet Comprehensive Aero-icing Analysis via Reduced-order Modeling," AIAA Journal, Vol. 54, No. 12, 2016, pp. 3787~3802. https://doi.org/10.2514/1.J055013
  19. Jeck, R. K., "Icing Design Envelops (14 CFR Parts 25 and 29, Appendix C) Converted to a Distance-based Format," Federal Aviation Administration Rept. DOT/FAA/AR-00.30, 2002.
  20. McKay, M. D., Beckman, R. J. and Conover, W. J., "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code," Technometrics, Vol. 42, No. 1, 2000, pp. 55~61. https://doi.org/10.1080/00401706.2000.10485979