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ABSTRACT

This paper presents a number of verification case studies for a recently developed sensitivity/uncertainty
code package. The code package, ROMUSE (Reduced Order Modeling based Uncertainty/Sensitivity
Estimator) is an effort to provide an analysis tool to be used in conjunction with reactor core simulators,
in particular the Virtual Environment for Reactor Applications (VERA) core simulator. ROMUSE has been
written in C++ and is currently capable of performing various types of parameter perturbations and
associated sensitivity analysis, uncertainty quantification, surrogate model construction and subspace
analysis. The current version 2.0 has the capability to interface with the Design Analysis Kit for Opti-
mization and Terascale Applications (DAKOTA) code, which gives ROMUSE access to the various algo-
rithms implemented within DAKOTA, most importantly model calibration. The verification study is
performed via two basic problems and two reactor physics models. The first problem is used to verify the
ROMUSE single physics gradient-based range finding algorithm capability using an abstract quadratic
model. The second problem is the Brusselator problem, which is a coupled problem representative of
multi-physics problems. This problem is used to test the capability of constructing surrogates via
ROMUSE-DAKOTA. Finally, light water reactor pin cell and sodium-cooled fast reactor fuel assembly
problems are simulated via SCALE 6.1 to test ROMUSE capability for uncertainty quantification and
sensitivity analysis purposes.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. ROMUSE2.0

associated sensitivity analysis, uncertainty quantification, surro-
gate model construction and subspace analysis. The current version
2.0 has the capability to interface with the Design Analysis Kit for
Optimization and Terascale Applications (DAKOTA) code [3], which

Providing best estimate predictions with error bounds in nu-
clear reactor simulation calculations is a vital need by regulatory
and industrial bodies. Therefore, the ability to quantify the un-
certainties and sensitivities in model predictions is a common
pursuit within the area of reactor modeling and simulation.

ROMUSE [1] is an effort within the Consortium for Advanced
Simulation of Light water reactors (CASL) to provide an analysis tool
to be used in conjunction with reactor core simulators, in particular
the Virtual Environment for Reactor Applications (VERA) core
simulator [2]. ROMUSE is written in C++ and is currently capable of
performing various types of parameter perturbations and
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gives ROMUSE access to the various algorithms implemented
within DAKOTA. The code is mainly designed to interface with
VERA and the Comprehensive Modeling and Simulation Suite for
Nuclear Safety Analysis and Design (SCALE) code [4]. Although
SCALE has also modules to perform the sensitivity and uncertainty
calculations, ROMUSE offer benefits associated with its capability to
construct reduced order, surrogate models used in place of SCALE.
The benefit for Monte Carlo based uncertainty quantification
application is derived from the reduced computer execution time of
the surrogate model versus SCALE. The benefit for Markov Chain-
Monte Carlo based model calibration is derived from both the
reduced computer execution time and reduction in the number of
parameters. For sensitivity analysis, computer execution time sav-
ings are realized by ROMUSE from the reduction in the number of
parameters. Also note that assuming a linear relationship between
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the response of interest and parameters, sometimes used in un-
certainty quantification and model calibration to avoid the need for
Monte Carlo sampling thereby reduce computer execution time,
need not be made when employing a surrogate model.

ROMUSE also can interface with any general model (e.g. python
and MATLAB) with Input/Output (I/O) format that utilizes the Hi-
erarchical Data Format 5 (HDF5) [5]. The algorithms within
ROMUSE are discussed in detail in Ref. 1, 6 and 7. It is also designed
to be used in conjunction with reactor analysis codes (e.g. reactor
core simulators). ROMUSE interfaces with the I/O of the simulator
of interest such that the I/O data are wrapped, modified and then
used in ROMUSE modules to complete analysis for the problem of
interest. ROMUSE can be utilized stand-alone or interfaced with
DAKOTA to complete the analysis. DAKOTA can provide ROMUSE
with access to a number of novel and efficient algorithms for un-
certainty quantification, surrogate construction, model calibration
and much more. More information on DAKOTA can be found in
Ref. 3.

There are various sequences in ROMUSE, each having different
parameters and performing a different algorithm or execution flow
[1]. Comprehensive Uncertainty Quantification (UQ) studies can be
performed via ROMUSE, where ROMUSE supports three different
UQ methods:

1. Brute force Monte Carlo UQ.

2. Multi-Physics Karhunen-Loeve (KL) expansion based UQ (uti-
lizes the Multi-Physics Efficient Range Finding Algorithm — MP-
EUQ in the case of coupled multi-physics codes).

3. Surrogate Based Monte Carlo UQ (SBUQ).

For more information about these algorithms consult Ref. 6.
Algorithms 2 and 3 require performing dimensionality reduction
when the core simulator requires substantial computer resources,
and in addition.

e for Algorithm 2 when there are a large number of input pa-
rameters and adjoint solutions are not available or there are a
large number of Responses of Interest even when adjoint solu-
tions are available; and

o for Algorithm 3 when there are a large number of input
parameters.

This can be done via ROMUSE, which implements efficient al-
gorithms for single physics and multi-physics dimensionality
reduction that are explained in detail in Ref. 6. These algorithms are
used to perform dimensionality reduction on the uncertainty
source space i.e. revealing the active or important degrees of
freedom (DoFs). Once the active DoFs are determined they can be
used to perform linear KL-based uncertainty quantification, sur-
rogate construction, or can be communicated to DAKOTA.

Perturbing input parameters is a vital feature for any analysis
code as many mathematical and statistical analyses such as UQ and
Model Calibration (MCal) require manipulating the parameter set.
The ROMUSE perturbation module is designed such that it allows
the user to manipulate the input parameters of any given model as
long as the parameters are formatted in the Hierarchical Data
Format 5 (HDF5) [5] format or SCALE cross-sections library binary
format [8] or VERA cross-section library format [2, 8, 9]. The ability
to perturb any parameters in HDF5 formatting allows ROMUSE to
work with any simulator with such I/O format.

1.2. Verification of ROMUSE

To establish the credibility of any computational tool, rigorous
verification and validation (V&V) must be performed. Model V&V is

necessary in order to provide engineering predictions with quan-
tified confidence [10]. Therefore, model V&V procedures and ap-
plications are needed.

Verification is the process of determining that a model imple-
mentation accurately represents the developer’s conceptual
description of the model and its solution. On the other hand, vali-
dation is the process of determining the degree to which a model is
an accurate representation of the real world from the perspective of
the intended uses of the model. Generally, verification requires
comparing the performance of the model of interest with other
V&V’ed models or problems with known analytical solutions. This
paper presents a number of verification case studies for ROMUSE by
comparing its solutions and analysis algorithms with those pro-
vided for four problems representing various levels of complexity.

The overarching goal is to verify ROMUSE capability to estimate
the sensitivities and uncertainties using Reduced Order Modeling
(ROM). At the core of ROM is the ability to calculate the basis of the
so-called active subspace. Once determined, the basis can be used
to construct surrogates and therefore, estimate uncertainties and
sensitivities efficiently. In this work, four case studies will be used
to complete the verification of the uncertainty/sensitivity capabil-
ities in ROMUSE:

1. A quadratic problem: this problem is used to test the Gradient
Based-Range Finding Algorithm (GB-RFA). The problem is
characterized by a known analytical solution which shows the
fundamental capability of computing the basis of the active
subspace as implemented in ROMUSE.

2. The Brusselator problem: this non-linear coupled problem is
used to test the newly developed surrogate construction capa-
bility, which is available through the ROMUSE-DAKOTA inter-
face. This problem implements a well-studied coupled problem
and resembles ROMUSE capabilities in constructing surrogate
models for coupled problems.

3. A pressurized water reactor (PWR) pin cell uncertainty/sensi-
tivity criticality problem via surrogate modeling. In this case
study, the bases are calculated and then used to estimate the
sensitivities and uncertainties for the infinite multiplication
factor kinf

4, A sodium-cooled fast reactor (SFR) assembly model uncertainty/
sensitivity problem via SCALEG6.1. In this case study a surrogate is
constructed and then used to estimate the uncertainty contri-
bution of the various nuclide-reactions in the multiplication
factor.

2. Verification case studies
2.1. Quadratic problem

In this case study, a quadratic model with a parameter space €
R10 js used:

f(x) :%xTAx xe[-1,1]1° (1)

whose gradient is given by
Vof (x) = Ax (2)

Since A is known, its column space and row space are known.
Therefore, the Gradient Based - Range Finding Algorithm (GB-RFA)
[7] can be tested against matrix A features. The GB-RFA should
capture approximately the column space of matrix A. ROMUSE 2.0
can perform the GB-RFA on any model by collecting snapshots of
the gradient vectors. In order to verify the ROMUSE version of the
GB-RFA algorithm, its results can be compared to known results as
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now described.

Engineering models usually solve the governing equations via
iterative numerical techniques; therefore, we do not have access to
the analytical form of the model relating the free parameters, x to
the solution, f(x). However in this case study the matrix A is known,
so we can compute the exact target of the GB-RFA and compare it to
ROMUSE2.0 calculations. Via singular value decomposition (SVD)
we can compute the orthonormal basis for the column space (U):

A=USV" (3)

where the columns of matrix U form a basis for the column space of
matrix A, while the columns of matrix V form a basis for the row
space of matrix A, and finally matrix § is a diagonal matrix con-
taining the singular values on its diagonal. Each singular value
represents the importance of the corresponding column of U in
representing the column space of matrix A. The GB-RFA can
compute an approximation (U’) to the matrix U. In order to test the
similarity of the active spaces represented by these matrices, three
different tests will be performed:

1. Measuring the angle between the two spaces: the angle be-
tween the two spaces represents the degree of agreement be-
tween the basis vectors by measuring the angle between these
vectors.

2. Computing and comparing the singular values.

3. Measuring the error in representing vectors drawn from the
column space of the matrix [6],

error < Cmax

(-0

5 = Eupper (4)

where p snapshots 5; are taken from the column space of matrix A
and C is a constant scalar.

A 10 x 10 random matrix was generated with a priori known
rank (r = 6), implying if the GB-RFA employs 6 snapshots the
approximated active space should be exact within numerical pre-
cision. First the angle between the two spaces has been calculated
and found to be effectively 0 rads (8.44 x 10~16), which means that
the basis of the computed basis vectors is in complete agreement
(refer to Table 1). Both singular values (Fig. 1) and the computed
error analysis (Fig. 2) indicate the same rank and illustrate the
agreement between the GB-RFA (performed by ROMUSE2.0) and
the known analytical values.

2.2. The Brusselator problem

The Brusselator is a theoretical model for a type of autocatalytic
reaction. Reaction—diffusion models frequently arise in the study of
various scientific and engineering systems. The Brusselator system
resembles reaction diffusion in chemical reactions. British mathe-
matician Alan Turing proved that a particular mathematical system
could produce spatial patterns from an arbitrary initial state. In its
most generic form a Turing model describing chemical diffusion
and reactions with respect to the chemical concentrations U and V
can be written in the form:

Table 1
Results for quadratic problem.

Algorithm SVD — Rank (r) Error-Rank (Eq. (4)) Angle (Theta)
Matrix A 6 6 8.44e-16 rads
GB-RFA 6 6
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Fig. 1. Singular values.
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Fig. 2. Error upper bound.

& — Dyv2U + f(U.V) (5)

‘zl—‘t/:vazv +g(U,V) (6)
where Dy and Dy are the diffusion coefficients setting the magni-
tude of diffusion for chemical species concentrations U and V,
respectively. These two equations represent the Brusselator prob-
lem, which is a coupled problem determining the concentration of
chemical species U and V. The coupling via the reaction kinetics is
typically nonlinear.

A reaction-diffusion model often corresponds to real chemical
reactions and reaction formulas. The Brusselator model used in this
case study is one of the simplest chemical models exhibiting a
pattern forming instability called Turing instability. In the case of
the Brusselator model the chemical reactions are given as:
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A-U (7)
B+U—V (8)
2U +V—-3U 9)
U—E (10)

where the concentrations of the chemicals A, B and E are kept
constant. One can derive the reaction kinetics equations corre-
sponding to the reaction scheme just defined. The reaction kinetics
of the Brusselator model is given by Ref. [11]:

f(U,V)=A— B+ 1)U+ UV (11)

g(U,V) =BU — U%V (12)

therefore, the transient equations would be:

%:UtzDUV2U+A—(B+1)U+U2V (13)
Ccli_‘t/:vt:DVVZVJrBUfUZV (14)

where A and B are scalar parameters, which govern the pattern
selection in the model by defining the reaction kinetics. In order to
obtain spatial patterns, it is always required that Dy #Dy. In this
case study, the spatial variations will be ignored (implying diffusion
can be ignored), implying that the Brusselator system of equations
will be used and solved at a certain point in space and for a certain
time interval. Setting A = 1, B = 3, and ignoring diffusion, the

Brusselator equations are:

au _ (4*U) + U2V (15)
dt

av ., 2

T o3U-Uv (16)

The solution of these two equations will be used to test ROMUSE
capability to build surrogate models in conjunction with DAKOTA.
First the reference solution is calculated, shown in Figs. 3 and 4 for
the concentrations of species U and V for a time interval of 20 s.
Based on the reference solution, ROMUSE-DAKOTA is used to build
a Gaussian Process (GP) surrogate model. The GP surrogate form
can be represented via the following:

7 t-b;\ 2
f6) = are () (17)
i=1

where {b;} collects the 7 known times at which the process was
observed, the {a;} are known functions of the observed process
output, and ¢ > 0 is an unknown correlation length parameter
estimated by DAKOTA. In general, practitioners often select
approximately 10 locations per input dimension at which to
observe the process for surrogate construction.

Once constructed, the surrogate model will be compared to the
reference solution. In this case study, the role of ROMUSE is to
generate the samples, and pass information to and from DAKOTA.

Fig. 5 presents the residuals for U(t) which are the differences
between the reference solutions and surrogate model predictions,
and Table 2 presents the goodness of fit results and compares them
to a corresponding Gaussian Mixture Model (GMM) MATLARB fit for
the same data. Similarly, Fig. 6 represents the residual for V(t). Note

u(t)

1
10 12 14 16 18 20

Time [s]

Fig. 3. U(t) Reference solution.
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Fig. 4. V(t) Reference solution.
Table 2
Goodness of fit —U(t)
ROMUSE-DAKOTA MATLAB
R-square: 0.996 R-square: 0.998
RMSE: 0.0541 RMSE: 0.041
Evaluation points 1000 Evaluation Points 1000
Table 3
Goodness of fit — V()
ROMUSE-DAKOTA MATLAB
R-square: 0.9527 R-square: 0.922
RMSE: 0.2638 RMSE: 0.307
Evaluation Points 1000 Evaluation Points 1000

AU(1) (9]

" " 1 " L 1 " 1

2 4 L] ] ° 2 "% 15
Time [¢]

Fig. 5. U(t) Relative surrogate residuals- ROMUSE-DAKOTA.
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Fig. 6. V(t) Relative surrogate residuals- ROMUSE-DAKOTA.

that these residuals are calculated based on comparing the vali-
dation set with the mean GP surrogate predictions. Table 3 sum-
marizes the goodness of fit as compared to a GMM MATLAB fit. The
slight difference between ROMUSE-DAKOTA and MATLAB results
may be due to the difference in the algorithm employed (EM al-
gorithm for MATLAB [12] and Surfpack algorithm for DAKOTA [3]).
Note that the goodness of fit in the case of U(t) is better than that of
V(t) due to the fact that the hyper-parameters (kernel function
type, kernel function scale) were optimized to match the U(t) ob-
servations and then used to fit both V(t) and U(t). This situation
resembles the case where two coupled multiphysics are available
and we have access to observations from one model (e.g. U(t)) and
access to observations from the coupled calculations (U(t), V(t)).
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2.3. Verification against SCALE uncertainty and sensitivity
calculations

This case study introduces a Monte Carlo based test to verify the
ability to estimate the individual uncertainty contribution of each
model parameter using ROMUSE2.0. In this test ROMUSE will be
used to determine the active subspace for the parameters, and then
used in a sensitivity study to determine the contribution of each
uncertainty contributor in the subspace. Once determined, the
basis vector can be used to define and solve a linear system of
equations, based on linearizing the model of interest, to determine
the uncertainty contribution of each DoF in conjunction with the
Monte Carlo based samples.

Ref. 14 introduces the so-called Efficient Subspace Method
(ESM). The ESM reduces the number of forward model runs used to
calculate the sensitivity coefficients. On the other hand, this case
study uses the Monte Carlo based samples and the influential DoFs
in order to estimate the contribution of the parameters in the
Monte Carlo UQ (MCUQ) analysis. Therefore, while Ref. 14 reduces
the number of model runs, this case study shows ROMUSE2.0
capability to equip the MCUQ with a technique to rank the pa-
rameters according to their uncertainty contribution.

2.3.1. Algorithm

This section introduces the analysis followed by ROMUSE2.0
results to estimate the sensitivity coefficients, Syx in Eq. (19) and
therefore the corresponding uncertainty contribution. To start,
consider the following model:

y=fx (18)

If we assume that the model is linear, the uncertainty in the input
parameter vector (X) can be propagated towards the Response of
Interest (Rol) vector (y) using the sandwich equation as follows:

Cy = SixCiS), (19)

where the square root of the diagonal elements of Cy are the
standard deviations (uncertainties) in the responses of the y vector.
Cy is the covariance matrix of the input parameter (x) and Syx
represents the sensitivity profile of the Rol (y) with respect to the
input parameter (X). However, taking into account that the
covariance matrix Cy is symmetric, then its singular value decom-
position can be written as follows:

2
Cy= UCXZCXUTX (20)

where Ug, is the matrix of the orthonormal eigenvectors of the
space spanned by the columns of matrix Cx and Z%X is a diagonal
matrix of the corresponding eigenvalues denoting the variances.
Hence, Eq. (19) can be rewritten as follows:

Cy = SyUc, =c2 U‘T;Xs§X = SyxUc, Zcx Ty UL, s§x (21)
Cl/Z Cl,/Z.T

Once a representative orthonormal matrix is determined (U) which
approximates U, by ignoring its column vectors associated with
small singular values. Computing this lower dimensional approxi-
mation matrix can be performed via various techniques that are
reviewed in Ref. [13]. Once matrix U is computed, the covariance
matrix (Cy) can be approximated as follows:

€)= (€U (5,.Cy?u)" (22)

This conclusion leads to the realization that the uncertainty can
be evaluated via r (where r is the number of columns in matrix U)
model executions instead of n executions (where n is the original
number of parameters). Each model execution would quantify the
uncertainty in the Rol due to a certain basis vector (degree of
freedom in the uncertainty sources space). Notice that the term
(SyxC,lc/ZU), the term in brackets in Eq. (22), can be written as:

SC/2U = [SpCi/ 2ty |-+| 5, (23)

Defining ; = C,l/zﬁ,» one obtains:

Sy €y P U =Sy [C %t || 20 | =Syulen |- [Br]=SpW (24)

where W = [@]---|or]. One can think of the vector ©; as a vector of
weights that gives every element a certain contribution in the
overall uncertainty. Following this logic, one can formulate the
following linear system of equations that can be solved to obtain a
reduced order estimate of the unknown sensitivity coefficients Syy:

R =W's), (25)

where the columns of R denote the change in the Rol (i.e. Ay). If we
are looking at the uncertainty in a single Rol, then RT and S;X will be
vectors instead of matrices.

The main issue now is that Eq. (25) denotes an under-
determined system, which means that it has infinitely many solu-
tions (if any!). Fortunately, we can construct a full rank system of
equations that has a unique solution. In order to do so we have to
realize that once we have the active subspace basis (i.e. U), one can
write any input snapshots as a linear combination of the basis
vectors:

n r
X = 3" Bl = > ol = U™ @™ (26)
i=1 i=1

Now the response variation (Aj) to a perturbation A¥ can be
written in terms of the derivatives of the Rol with respect to the
reduced input variable (o/*1):

oY A Y Al — S, AT
AY = da Ad + et Ad) =Sy, AW (27)

where ;’—Z denotes the directional derivative of y in direction u;. The
directional derivatives denote the sensitivity coefficients Sy,
where Sy, is a vector if the problem has only one Rol and can be

obtained by evaluating y a total of r + 1 times as now explained.
Choosing the perturbations A¥ as

A% = @) = Gy %y (28)
the vector A@ can be calculated using Eq. (26):

AW = UTA® = UTC/ %y (29)

Then the response of ¥ can be calculated for each A#@ allowing
Eq. (25) to be written as

R =A'S), (30)

where
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Gap
d

Cla
[J Borated Water (Coolant)

Fig. 7. LWR fuel pin model.

A= [Aal... Aaf] (31)
Once Eq. (30) is solved for Sy, the reduced order sensitivities Syx
can be estimated using the chain rule and Eq. (26):

Syx - SyaSax - SyaUT (32)

Knowing the reduced order estimate of the sensitivity profile,
the sandwich equation can be used to calculate an estimate of the
uncertainty contribution for each source in the input space. In the
case of MCUQ, matrix A represents the random set of perturbed
parameters and R is the matrix of corresponding response samples.

The following steps summarize the proposed technique, given
that the DoFs (columns of matrix U) have been calculated in
advance:

1 Generate the samples of the parameters matrix W.

2 Collect the corresponding Rol samples and generate the matrix
R.

3 Using Eq. (29), project the parameter samples onto the active
subspace (U) yielding matrix A.

4 Use Eq. (30) to estimate the sensitivity matrix Sy,.

Table 4
Comparison of Monte Carlo based versus sensitivity-based uncertainty contributions.

5 Use Eq. (32) to map the sensitivity matrix from the reduced
space (Syq) to the original space (Syx).

6 Knowing the sensitivity matrix (Syx), rate the uncertainty
contribution of each parameter.

2.3.2. PWR pin cell model

In this numerical test, uncertainty quantification will be per-
formed via the proposed approach, and then the estimated con-
tributions will be compared to those estimated via the sensitivity
factors calculated by SCALE 6.1 [15]. This example uses a nuclear
fuel pin cell model (cf. Fig. 7) simulated via SCALE with the goal to
determine the uncertainty in the infinite multiplication factor (ki,s).
Fig. 7 shows a representation of the 2-dimensional geometry of the
fuel pin cell. At the center (red region) is the fuel pellet which
contains the uncertainty source associated with microscopic cross
section values, the fuel pellet is surrounded by a helium gap (green
region). The Zr-4 alloy cladding (blue region) and borated water
(yellow region), that serves as a coolant and moderator, are also
shown. In this example, a single, fresh fuel pin cell is extracted from
the reactor core model, therefore the reference k;,s is 1.172437.

Table 4 presents a comparison of uncertainty contribution re-
sults between the proposed technique and the SCALE sensitivity-
based analysis. The top eight contributors in the overall uncer-
tainty are reported and compared. The overall uncertainty in Ky is

0.57% (sensitivity based %%) while the overall MC based uncer-
tainty is 0.55% (%%). The proposed approach depends on the

predetermined DoFs and their precision in representing the
parameter space. In this case study, an error tolerance of 1% was
used in calculating the subspace basis for the DoFs (i.e. the error in
Eq. (4)). Given more precision in the calculated basis (DoFs), the
results in Fig. 8 converge towards the MC estimated contributions.
The MC based uncertainties in Table 4 are calculated using samples
drawn assuming the corresponding covariance matrix (column 2 in
Table 4). Therefore, for each nuclide-reaction covariance matrix, MC
samples of the multiplication factor where collected and the cor-
responding relative uncertainty contributions were computed
(%%). Sufficient Monte Carlo samples were drawn such that the
statistical uncertainty associated with Monte Carlo can be consid-
ered negligible with reference to the subspace error.

2.4. Sodium-cooled fast reactor assembly model

In this case study a fuel assembly model of a typical sodium-
cooled fast reactor (SFR) [14,16] as shown in Fig. 9 is modeled.
The assembly has 217 fuel pins and each fuel pin consists of U-10Zr
metallic fuel (red region) contained inside HT9 cladding (dark blue
region). The sodium coolant (light blue region) and the fuel rods are
located inside the HT9 duck (green region). The ratio of the pitch to
the pin diameter is about 1.14. The SCALE package TSUNAMI-2D

Index Covariance matrix Nuclide (reaction) MC based Uncertainty [%Al—ck ] Sensitivity based [%ATI< } Relative Error
1 U238(n,y) — UZ8(n,y) 3.6321E-01% 3.6153E-01% 0.5%

2 U235 (7) — U235 (7) 2.5012E-01% 2.5321E-01% 1.2%

3 U5 (n,y) — UB5(n,y) 1.5543E-01% 1.6112E-01% 3.5%

4 U28(n,n') - UB8(n,m) 1.4520E-01% 1.6422E-01% 11.6%

5 U5 (y) — U235 (y) 1.3411E-01% 1.2343E-01% 8.7%

6 U235(n,f) — USB5(n, y) 1.2432E-01% 1.1652E-01% 6.7%

7 U235(n,f) — UB5(n,f) 1.1265E-01% 1.1301E-01% 0.3%

8 U238 (5) — U238(7) 1.0212E-01% 9.8597E-02% 3.6%
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Fig. 9. SFR fuel pin model.

[13] is employed to complete the analysis. TSUNAMI-2D uses NEWT
as the neutronic solver and SAMS to apply the adjoint method to
estimate the sensitivity; hence, the uncertainty is estimated line-
arly by combining the uncertainty library and the sensitivity co-
efficients using Eq. (19).

The reference value of ki, is 1.20195 with an uncertainty
% = 2.5121% estimated via TSUNAMI-2D. In this case study, a
polynomial surrogate is constructed for k,r using ROMUSE. The

formulated surrogate takes the following form:

r r r
Akint" = " sibai+ Y " sjhaiAg; (33)
i=1 i

i=1 j>i

where Aq; is the perturbation of the ith element of the reduced
cross-sections vector (the cross-sections vector projected on the
active subspace — Eq. (29)) and s; can be seen as the first order
sensitivity coefficient while s;; are the elements of the Hessian
matrix. The values for s; and s; are estimated via least squares.

Table 5 compares the uncertainty contributions as obtained
using TSUNAMI-2D and ROMUSE 1st order surrogate (the first term
in Eq. (33)) and those obtained via a 2nd order surrogate (Eq. (33)).
It is clear that the second order approximation predicts the con-
tributors with a better accuracy than the predictions of the 1st
order surrogate. Moreover the first order surrogate approximation
results in a higher relative error with a maximum of 8.1% while the
2nd order surrogate relative error is much lower in general.

3. Summary and conclusions

In this work, four verification case studies have been used to
verify the range finding algorithm, surrogate construction and
uncertainty quantification capabilities in ROMUSE2.0. The first case
study compared the range finding algorithm performance for a
quadratic problem with known solution. The second case study
used ROMUSE to construct a surrogate model for the Brusselator
problem. The predictions of the ROMUSE surrogate and the Brus-
selator model were compared. The third and fourth problems are
criticality problems. The third problem is an uncertainty quantifi-
cation for a PWR pin cell model. The uncertainty was quantified via
a Monte Carlo sampling scheme and compared to that estimated
via the algorithm presented in section 2.3.1 and used by ROMUSE to
estimate the overall uncertainty and the contribution of each
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Table 5

Comparison of TSUNAMI-2D based versus 2nd order surrogate based uncertainty contributions.

No Covariance matrix (nuclide- TSUNAMI-2D based

2"d Order Surrogate based

2" Order Relative 1%t order Surrogate based 15t Order Relative

reaction) Uncertainty Uncertainty Error Uncertainty Error
Ak Ak Ak
& i il

1 U235(n,y)— U?3(n,y) 2.0334% 1.9433% 4.43% 1.9073% 6.20%
2 UB8(n,n)— UB8(n,n) 1.3549% 1.3264% 2.10% 1.3067% 3.56%
3 UB8(n,y)— UB8(n,y) 0.3780% 0.3697% 2.21% 0.3512% 7.10%
4 UBS(y) - UB5(y) 0.2902% 0.2793% 3.75% 0.3104% 7.98%
5 U?3(fission) — U?35(fission) 0.2151% 0.2139% 0.56% 0.2126% 1.20%
6 U387 — UB8(7) 0.1962% 0.1921% 2.04% 0.2042% —4.09%
7 U8 (elastic) — U?38(n,n") —0.1396% —0.1353% 3.10% —0.1283% 8.10%
8 UB57)— UH(y) 0.1305% 0.1297% 0.57% 0.1292% 1.01%
9 UB5(n,n')- U (n,n) 0.1016% 0.1014% 0.23% 0.1009% 0.69%
10 Na?3(elastic) — Na®3 (elastic) ~ 0.0864% 0.0873% -1.07% 0.0835% 3.41%
11 Na?3(n,n’) — Na®3(n,n) 0.0696% 0.0702% —0.91% 0.0523% 6.75%
12 U5 (elastic) — U%5(n,y) —0.0642% —0.0621% 3.27% —0.0660% —2.83%

parameter. The top individual nuclide-reaction type contributors to
the overall uncertainty were reported to agree with a maximum
relative error of 11.6%, indicating a non-linear dependency of the
kinron the U38(n,n’) — U?38(n, n’) reaction covariance. In the fourth
case study ROMUSE was used to replace the neutronics solver
NEWT with a polynomial surrogate model. The uncertainties were
estimated via TSUNAMI-2d and a surrogate model for a SFR as-
sembly model. Results showed that the major individual nuclide-
reaction type uncertainty contributors can be revealed via the
2nd order surrogate model with a maximum relative error of 4.43%
in the corresponding uncertainty.

The overarching goal of ROMUSE is to equip the analyst with a
tool to perform uncertainty quantification and sensitivity analysis
for nuclear reactor models and simulators. The work reported upon
here serves as a basis to verify ROMUSE, so that it can be used with
confidence to complete sensitivity analysis, uncertainty quantifi-
cation, surrogate model construction and subspace analysis.
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