• Title/Summary/Keyword: Surgical technology

Search Result 370, Processing Time 0.032 seconds

Region-Based 3D Image Registration Technique for TKR (전슬관절치환술을 위한 3차원 영역기반 영상정합 기술)

  • Key, J.H.;Seo, D.C.;Park, H.S.;Youn, I.C.;Lee, M.K.;Yoo, S.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.392-401
    • /
    • 2006
  • Image Guided Surgery (IGS) system which has variously tried in medical engineering fields is able to give a surgeon objective information of operation process like decision making and surgical planning. This information is displayed through 3D images which are acquired from image modalities like CT and MRI for pre-operation. The technique of image registration is necessary to construct IGS system. Image registration means that 3D model and the object operated by a surgeon are matched on the common frame. Major techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to additional trauma, its invasive protocol inserting fiducial markers in patient's bone and generating noise data when 2D slice images are acquired by image modality because many markers are made of metal. Therefore, this paper developed shape-based registration technique to improve the limitation of fiducial marker based IGS system. Iterative Closest Points (ICP) algorithm was used to match corresponding points and quaternion based rotation and translation transformation using closed form solution applied to find the optimized cost function of transformation. we assumed that this algorithm were used in Total Knee replacement (TKR) operation. Accordingly, we have developed region-based 3D registration technique based on anatomical landmarks and this registration algorithm was evaluated in a femur model. It was found that region-based algorithm can improve the accuracy in 3D registration.

The effect of the thread depth on the mechanical properties of the dental implant

  • Lee, Sun-Young;Kim, Sung-Jun;An, Hyun-Wook;Kim, Hyun-Seung;Ha, Dong-Guk;Ryo, Kyung-Ho;Park, Kwang-Bum
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • PURPOSE. This study aimed to evaluate the effect of implant thread depth on primary stability in low density bone. MATERIALS AND METHODS. The insertion torque was measured by inserting Ti implants with different thread depths into solid rigid polyurethane blocks (Sawbones) with three different bone densities ($0.16g/cm^3$, $0.24g/cm^3$, and $0.32g/cm^3$). The insertion torque value was evaluated with a surgical engine. The static compressive strength was measured with a universal testing machine (UTM) and the Ti implants were aligned at $30^{\circ}$ against the loading direction of the UTM. After the static compressive strength test, the Ti implants were analyzed with a Measurescope. RESULTS. The Ti implants with deeper thread depth showed statistically higher mean insertion torque values (P<.001). Groups A and group B had similar maximum static compressive strengths, as did groups C and D (P>.05). After the static compressive strength, the thread shape of the Ti implants with deeper thread depth did not show any breakage but did show deformation of the implant body and abutment. CONCLUSION. The implants with deeper thread depth had higher mean insertion torque values but not lower compressive strength. The deep threads had a mechanical stability. Implants with deeper thread depth may increase the primary stability in areas of poor quality bone without decreasing mechanical strength.

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

Respiratory Review of 2012: Bronchoscopic Innovations and Advances

  • Nam, Sung-Jin;Hwangbo, Bin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.4
    • /
    • pp.197-203
    • /
    • 2012
  • Recent advances in bronchoscopy have led to changes in clinical diagnostics and therapeutics in pulmonary medicine. In diagnostic bronchoscopy, there have also been new developments in endobronchial ultrasound technology which may be incorporated into clinical practice in the near future. Functional bronchoscopy, which evaluates information such as airway pressure, airflow, or gas exchange, suggests promising clinical advances in the near future. In therapeutic bronchoscopy, bronchoscopic volume reduction is a novel approach for the treatment of severe emphysema. In this review, seven recently published articles representing current advances in bronchoscopy are summarized and discussed.

Evaluation and Design of Ultrasonic Vibrator for Dental Surgery (치과용 골 수술기의 초음파 진동자 설계 및 평가)

  • Park, Ki-Moon;Kim, Jung-Hyun;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.102-108
    • /
    • 2016
  • A dental ultrasonic surgical instrument, commercially known as a scaler, is a high-value-added advanced technology that is used for tartar removal, implant operations, and gum and jaw bone surgery. In this study, the piezoelectric phenomenon for making linear motion associated with input electrical signals was studied, and the behavior of the ultrasonic vibrator was investigated by using the commercially available finite element program ANSYS(R) for the purpose of designing dental surgery tools. Modal analysis was carried out, and the optimal frequency range was calculated from the analyzed results. The ultrasonic vibrator was then redesigned based on the calculated optimal frequency range. The performance of the system was tested, and consequently, the proposed methodology was proven useful in vibrator design.

A Study on a Remedy of Telangiectasia using Electromagnetic Waves (전자파를 이용한 모세혈관 확장증 치료에 관한 연구)

  • Kim, Wang-Hyun;Cho, Jei-Won;Kwon, Do-Sung;Chung, Young-Seek;Cheon, Chang-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1570_1571
    • /
    • 2009
  • 본 논문에서는 초고주파를 이용하여 하지정맥류(Varicose vein)의 초기증상인 모세혈관 확장증(Telangiectasia)을 치료하는 데에 목적을 두었다. 유전율 차이에 따라 전자파(Electromagnetic waves)를 흡수하는 양이 다르다는 것을 전제하에 다리 모델링에 필요한 피부, 혈관, 혈액, 피하조직의 유전율을 구하였고, 혈관과 피부의 유전율에 비해 혈액의 유전율이 높다는 것을 통해 다른 조직에 비해 혈액의 전자파 흡수율이 높다는 것을 확인하였다. 피부의 구조와 유전율을 이용하여 모델링 한 후, 시뮬레이션을 통해 SAR(Specific Absorption rate)분포를 확인하였다.

  • PDF

Photobiomodulation and implants: implications for dentistry

  • Tang, Elieza;Arany, Praveen
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.6
    • /
    • pp.262-268
    • /
    • 2013
  • The use of dental implants has become a mainstay of rehabilitative and restorative dentistry. With an impressive clinical success rate, there remain a few minor clinical issues with the use of implants such as peri-implant mucositis and peri-implantitis. The use of laser technology with implants has a fascinating breadth of applications, beginning from their precision manufacturing to clinical uses for surgical site preparation, reducing pain and inflammation, and promoting osseointegration and tissue regeneration. This latter aspect is the focus of this review, which outlines various studies of implants and laser therapy in animal models. The use of low level light therapy or photobiomodulation has demonstrated its efficacy in these studies. Besides more research studies to understand its molecular mechanisms, significant efforts are needed to standardize the clinical dosing and delivery protocols for laser therapy to ensure the maximal efficacy and safety of this potent clinical tool for photobiomodulation.

Creating protective appliances for preventing dental injury during endotracheal intubation using intraoral scanning and 3D printing: a technical note

  • Cho, Jin-Hyung;Park, Wonse;Park, Kyeong-Mee;Kim, Seo-Yul;Kim, Kee-Deog
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 2017
  • Digital dentistry has influenced many dental procedures, such as three-dimensional (3D) diagnosis and treatment planning, surgical splints, and prosthetic treatments. Patient-specific protective appliances (PSPAs) prevent dental injury during endotracheal intubation. However, the required laboratory work takes time, and there is the possibility of tooth extraction while obtaining the dental impression. In this technical report, we utilized new digital technology for creating PSPAs, using direct intraoral scanners and 3D printers for dental cast fabrication.

A study on the air detector using relative dielectric constant (비유전율을 이용한 공기감지장치에 관한 연구)

  • Lee, Hyuk-Soo;Kim, Cheong-Worl
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.384-388
    • /
    • 2007
  • Air embolism can be a lethal complication of surgical procedures during which venous pressure at the site of surgery is sub-atmospheric or air is forced under pressure into a body cavity. To solve the problem, we developed the air detector using relative dielectric constant change, which is expected to be used broadly in industrial circles. We designed a detection circuit of sensing scheme. In experiments with a mock system, the proposed system showed a signal difference depending on the amount of air in the tygon tube of the mock system.

Real time simulation on B-spline deformable volume-part I (B-spline volume 변형체의 실시간 시뮬레이션 I)

  • 김현기;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.62-69
    • /
    • 2002
  • With the development of CUP speed and graphic technology, real-time simulation of deformable object is embossed as an essential issue in engineering field. Recently, it has been applied to the surgical training and game animation with haptic force feedback. But real time simulation of deformable objects is not easy because of the conflicting demands of speed and low latency and physical accuracy. In this study, we present the implementation of boundary element method(BEM) which is combined with the nonuniform B-spline surface. It is working together with the real-time simulation technique and the geometry data is altered by handling control points without preprocessing routine.

  • PDF