• Title/Summary/Keyword: Surge suppression device

Search Result 12, Processing Time 0.023 seconds

Waterhammer For In-line Booster Pump (직결식 펌프의 수격현상)

  • Kim, S C.;Lee, K. B.;Kim, K. Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.208-216
    • /
    • 2004
  • The waterhammer occured when the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests of the waterhammer were carried out for PanGyo booster pumping station. The PanGyo pumuing station was installed booster pump of 6 sets and in-line pump of 2 sets. The main surge suppression device was equipped with the pump control valve and the surge relief valve as auxiliary. However, the pump control valve had not early controlled in the planned closing mode, and the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. After the addition surge suppression device was equipped with air chamber. Further more in-line pump is needed surge suppression device that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF

Case Study of Repair Works on Surge Suppression Device for Booster Pumping Station (가압펌프장의 수격완화설비에 대한 보수·보강 사례)

  • Kim, Sang-gyun;Lee, Dong-keun;Lee, Gye-bok;Kim, Kyung-yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.20-26
    • /
    • 2005
  • When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests on the waterhammer were carried out for Pangyo booster pumping station in which had six booster pumps and two in-line pumps with the motor of output 1,700 kW, respectively. The booster pumping station was equipped with the pump control valve as the main surge suppression device, and the surge relief valve as auxiliary one. But the pump control valve had not early controlled in the planned closing mode, the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the positive pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the pump control valve was damaged. After the air chambers were additionally installed in the booster pumping station, it was preyed that the water supply system acquire the safety and reliability on the pressure surge.

Waterhammer for the Intake Pumping Station with the Pump Control Valve (펌프제어밸브를 사용한 취수펌프장에서의 수격현상)

  • Kim, Kyung-Yup;Oh, Sang-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.16-21
    • /
    • 2001
  • The field tests on the waterhammer were carried out for PalDang intake pumping station of the metropolitan water supply 5th stage project. The pumping station was equipped with the pump control valve as the main surge suppression device and the surge relief valve as auxiliary. However, the pump control valve had not been early controlled in the planned closing mode, and the slamming occurred to the valve which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. It was desirable that the surge relief valve was installed in the pumping station or near the pump exit for the delay of response. After reforming the oil dashpot of the pump control valve, the sliming disappeared and the measured pressure was in fairly good agreement with the results of simulation. In case of three pumps for ${\phi}2,600$ pipeline being simultaneously tripped, the pressure head in the pumping station increased to 95.6 m, and the upsurge caused by the emergency stop of four pumps for ${\phi}2,800$ pipeline was 89.6m. We concluded that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF

Waterhammer for In-line Booster Pump (직결식 펌프의 수격현상)

  • Kim, Sang-Gyun;Lee, Gye-Bok;Kim, Kyung-Yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.7-14
    • /
    • 2005
  • The waterhammer occur when the pumps are started or stopped for the operation or tripped due to the power failure, and the hydraulic transients take place as a result of the sudden change in velocity. Several times, the field tests of the waterhammer were carried out for Pangyo booster pumping station. Pangyo pumping station was installed with the booster pumps of 6 sets and the in-line pumps of 2 sets. The in-line pumps are additionally needed to the surge suppression device so that the pumping station acquire the safety and reliability for the pressure surge.

High Performance ESD/Surge Protection Capability of Bidirectional Flip Chip Transient Voltage Suppression Diodes

  • Pharkphoumy, Sakhone;Khurelbaatar, Zagarzusem;Janardhanam, Valliedu;Choi, Chel-Jong;Shim, Kyu-Hwan;Daoheung, Daoheung;Bouangeun, Bouangeun;Choi, Sang-Sik;Cho, Deok-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.196-200
    • /
    • 2016
  • We have developed new electrostatic discharge (ESD) protection devices with, bidirectional flip chip transient voltage suppression. The devices differ in their epitaxial (epi) layers, which were grown by reduced pressure chemical vapor deposition (RPCVD). Their ESD properties were characterized using current-voltage (I-V), capacitance-voltage (C-V) measurement, and ESD analysis, including IEC61000-4-2, surge, and transmission line pulse (TLP) methods. Two BD-FCTVS diodes consisting of either a thick (12 μm) or thin (6 μm), n-Si epi layer showed the same reverse voltage of 8 V, very small reverse current level, and symmetric I-V and C-V curves. The damage found near the corner of the metal pads indicates that the size and shape of the radius governs their failure modes. The BD-FCTVS device made with a thin n- epi layer showed better performance than that made with a thick one in terms of enhancement of the features of ESD robustness, reliability, and protection capability. Therefore, this works confirms that the optimization of device parameters in conjunction with the doping concentration and thickness of epi layers be used to achieve high performance ESD properties.

Numerical Study on the Waterhammer of PalDang Intake Pumping Station (팔당 취수펌프장의 수격현상에 관한 수치해석적 연구)

  • Kim, Kyung-Yup;Yu, Teak-In
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.52-58
    • /
    • 2000
  • The numerical study on the waterhammer was carried out for the intake pumping station of the metropolitan water supply 6th stage project. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully investigated. The surge tank and the stand pipes effectively protected the tunnels md the downstream region of pipeline from the pressure surge. In case the moment of inertia of the pump and motor was above $5080\;kg{\cdot}m^2$, the column separation did not occur in the pipeline between the pumping station and the inlet of 1st tunnel. As the moment of inertia increased, the pressure surges decreased in the pipeline conveying raw water. The pump control valve was chosen as the main surge suppression device for the intake pumping station. After power failure, the valve disc should be rapidly closed in 2.5 seconds and controlled the final closure to 15 seconds by the oil dashpot. If the slamming happened to the pump control valve, there was some danger of this system damaging. As the reverse flow through the valve increased, the upsurge extremely increased.

  • PDF

The Plan of Safety for Pump Station through Hydraulic Transient Analysis & Demonstration (과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안)

  • Ra, Beyong-pil;Kim, Jin-man;Park, Jong-ho;Kim, Kyung-yup
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.199-207
    • /
    • 2004
  • Water supply facilities are recently getting larger according as domestic waterworks become multi regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment station and water supply & distribution facilities. Although pumping stations and pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. As a result of this study, a pumping station is guaranteed by the computer simulation and field test analysis. Therefore these are contributed safety operation in pumping station through adjustment of the pumping station safety plan, air valve and valve closing time.

  • PDF

A Study on the Design and Chracteristic Analysis for Noise Cut Transformer (NCT 설계 및 특성 분석에 관한 연구)

  • 이재복;허창수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.146-154
    • /
    • 1998
  • Broadband noise with frequency components in the range from several kHz up the tens of MHz is a major obstacle factor in normal operation of the AC line to supply the power to electrical and electronic control equipments. Because this kind of noise could damage the device or could be a source of malfunction, many devices such as filter and surge suppressor are used to cut off the noise. But those devices could not disconnected from the power line, so they result in poor common-mode of NCT as well as insulation characteristics as a isolation transformer in addition faraday shielding and proposed analysis model of NCT having tow functions of surge and noise reduction. The simulated and experimental results for the surge suppression characteristics are compared and evaluated for designed protype 1[kVA] NCT.

  • PDF

A Safety Plan for the Pumping Station by Hydraulic Transient Analysis and Demonstration (과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안)

  • Ra, Beyong-pil;Kim, Jin-min;Lee, Dong-keun;Park, Jong-ho;Kim, Kyung-yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.22-28
    • /
    • 2005
  • As the water supply facilities are recently getting larger, the domestic waterworks become multi-regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment plant and water supply/distribution facilities. Although the pumping stations and the pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. In this paper, the intake pumping station is guaranteed by both the computer simulation and the field test analysis. This study is contributed to the safe operation program for the pumping station in which results of the adjustment on the safety plan of the pumping station, the air valve and the valve closing time.

Application & Examination of the Plan for Optimum Stability through Water-hammer in Pipe Line and Booster Pump Station (관로계통 및 가압펌프장 수격에 따른 최적 안정성 확보방안)

  • Ra, Beyong-Pil;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.19-24
    • /
    • 2009
  • This paper is performed to find out the stability of water-hammer in pipe line and pump station that is happened when additional water needs demanded. At first, the water supply construction project is planned to supply $6,000\;m^3/day$ through 17.9 km pipe line. But additional demand ($1,200\;m^3/day$) happened from Cheong-ra water reservoir. In this situation, air-chamber($4\;m^3$) and vacuum breaker valve(${\varphi}100\;mm$) are needed to prevent water-hammer. When the additional water is supplied, the existing facilities (air-chamber, vacuum breaker valve) are sufficient to alleviate shock not changing capacity alteration, judging from the airspace change and rise. Therefore, there is no problem for water-hammer by installing air-chamber($4\;m^3$) and vacuum breaker valve(${\varphi}100\;mm$) at the top of Yeo-ju hill.