• Title/Summary/Keyword: Surface-enhanced IR Spectroscopy

Search Result 29, Processing Time 0.03 seconds

Influence of Surface Treatment of Polyimide Film on Adhesion Enhancement between Polyimide and Metal Films

  • Park, Soo-Jin;Lee, Eun-Jung;Kwon, Soo-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.188-192
    • /
    • 2007
  • In this work, the effects of chemical treatment of polyimide films were studied by FT-IR, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angles. The adhesion characteristics of the films were also investigated in the peel strengths of polyimide/aluminum films. The increases of surface functional groups of KOH-treated polyimide films were greatly correlated with the polar component of surface free energy. The peel strength of polyimides to metal substrate was also greatly enhanced by increasing the KOH treatment time, which can be attributed to the formation of polar functional groups on the polyimide surfaces, resulting in enhancement of the work of adhesion between polymer film and metal plate.

Influence of Nitrogen Plasma Treatment on Low Temperature Deposited Silicon Nitride Thin Film for Flexible Display (플렉서블 디스플레이 적용을 위한 저온 실리콘 질화막의 N2 플라즈마 처리 영향)

  • Kim, Seongjong;Kim, Moonkeun;Kwon, Kwang-Ho;Kim, Jong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • Silicon nitride thin film deposited with Plasma Enhanced Chemical Vapor Deposition was treated by a nitrogen plasma generated by Inductively Coupled Plasma at room temperature. The treatment was investigated by Fourier Transform Infrared Spectroscopy and Atomic Force Microscopy on the surface at various RF source powers at two RF bias powers. The amount of hydrogen was reduced and the surface roughness of the films was decreased remarkably after the plasma treatment. In order to understand the causes, we analyzed the plasma diagnostics by Optical Emission Spectroscopy and Double Langmuir Probe. Based on these analysis results, we show that the nitrogen plasma treatment was effective in the improving of the properties silicon nitride thin film for flexible display.

Amine functionalized plasma polymerized PEG film: Elimination of non-specific binding for biosensing

  • Park, Jisoo;Kim, Youngmi;Jung, Donggeun;Kim, Young-Pil;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.378.2-378.2
    • /
    • 2016
  • Biosensors currently suffer from severe non-specific adsorption of proteins, which causes false positive errors in detection through overestimation of the affinity value. Overcoming this technical issue motivates our research. Polyethylene glycol (PEG) is well known for its ability to reduce the adsorption of biomolecules; hence, it is widely used in various areas of medicine and other biological fields. Likewise, amine functionalized surfaces are widely used for biochemical analysis, drug delivery, medical diagnostics and high throughput screening such as biochips. As a result, many coating techniques have been introduced, one of which is plasma polymerization - a powerful coating method due to its uniformity, homogeneity, mechanical and chemical stability, and excellent adhesion to any substrate. In our previous works, we successfully fabricated plasmapolymerized PEG (PP-PEG) films [1] and amine functionalized films [2] using the plasma enhanced chemical vapor deposition (PECVD) technique. In this research, an amine functionalized PP-PEG film was fabricated by using the plasma co-polymerization technique with PEG 200 and ethylenediamine (EDA) as co-precursors. A biocompatible amine functionalized film was surface characterized by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The density of the surface amine functional groups was carried out by quantitative analysis using UV-visible spectroscopy. We found through surface plasmon resonance (SPR) analysis that non-specific protein adsorption was drastically reduced on amine functionalized PP-PEG films. Our functionalized PP-PEG films show considerable potential for biotechnological applications such as biosensors.

  • PDF

Effect of O2 Plasma Treatments of Carbon Supports on Pt-Ru Electrocatalysts

  • Park, Soo-Jin;Park, Jeong-Min;Seo, Min-Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.331-334
    • /
    • 2010
  • In the present study, carbon supports mixed with purified multi-walled carbon nanotubes (MWNTs) and carbon blacks (CBs) were used to improve the cell performance of direct methanol fuel cells (DMFCs). Additionally, the effect of $O_2$ plasma treatment on CBs/MWNTs supports was investigated for different plasma RF powers of 100, 200, and 300 W. The surface and structural properties of the CBs/MWNTs supports were characterized by FT-IR, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and inductive coupled plasma-mass spectrometer (ICP-MS). The electrocatalytic activity of PtRu/CBs/MWNTs catalysts was investigated by cyclic voltammetry measurement. In the experimental results, the oxygen functional groups of the supports were increased with increasing plasma RF power, while the average Pt particle size was decreased owing to the improvement of dispersibility of the catalysts. The electrochemical activity of the catalysts for methanol oxidation was gradually improved by the larger available active surface area, itself due to the introduction of oxygen functional groups. Consequently, it was found that $O_2$ plasma treatments could influence the surface properties of the carbon supports, resulting in enhanced electrocatalytic activity of the catalysts for DMFCs.

Direct Bonding Characteristics of 2" 3C-SiC Wafers for Harsh Environment MEMS Applications (극한 환경 MEMS용 2" 3C-SiC기판의 직접접합 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.700-704
    • /
    • 2003
  • This paper describes on characteristics of 2" 3C-SiC wafer bonding using PECVD (plasma enhanced chemical vapor deposition) oxide and HF (hydrofluoride acid) for SiCOI (SiC-on-Insulator) structures and MEMS (micro-electro-mechanical system) applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si (001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR (attenuated total reflection Fourier transformed infrared spectroscopy). The root-mean-square suface roughness of the oxidized SiC layers was measured by AFM (atomic force microscope). The strength of the bond was measured by tensile strength meter. The bonded interface was also analyzed by IR camera and SEM (scanning electron microscope), and there are no bubbles or cavities in the bonding interface. The bonding strength initially increases with increasing HF concentration and reaches the maximum value at 2.0 % and then decreases. These results indicate that the 3C-SiC wafer direct bonding technique will offers significant advantages in the harsh MEMS applications.ions.

Preparation of Poly(ethylene naphthalate) Film Coated with Silicones for High Temperature Insulator (실리콘 코팅을 이용한 poly(ethylene naphthalate) 고온용 방열 필름의 제조)

  • Lee, Soo;Na, Cha-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.167-173
    • /
    • 2007
  • The surface of poly(ethylene naphthalate) film applicable to high temerature insulator for convection microwave oven was modified with silicone coating solutions in the presence of silane crosslinking agent. The structure and properties of the PEN films were investigated by using Fourier transform IR spectroscopy, viscometry, microscopy, and tensile tests. The experimental results showed that the coating with silicone enhanced thermal stability up to $200^{\circ}C$, and slightly lowered the tensile strength and elongation of the PEN films. Judging from dimensional stability results the silicone coated PEN films can not be used for higher temperature insulator above $230^{\circ}C$. Serious dimensional contraction of films was obtained during heat treatment at $250^{\circ}C$ even for 1h. However, the surface of those films still have same chemical structure of silicones. Therefore, If we use PEN film prestretched at $230^{\circ}C$ as base one it will be possible to prepare a high temperature insulator up to $230^{\circ}C$. Conclusively, a silicone coated PEN film can be suitable for the application to convection microwave oven door insulator at high temperature up to $230^{\circ}C$.

Adsorption of Nitrogen Dioxide on Transition-Metal-Oxide-Incorporated Hydrotalcites (전이금속 산화물이 고정된 하이드로탈사이트에 이산화질소 흡착)

  • Park, Ji Won;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1029-1038
    • /
    • 2008
  • Transition-metal-oxide-incorporated hydrotalcites were prepared by hydrothermal reaction of their synthetic mixtures containing precursors of transition metal oxides and their properties of nitrogen dioxide adsorption was investigated. The dispersion of transition metal oxides on the hydrotalcites and the amount and the state of nitrogen dioxide adsorbed on them were examined by using XRD, SEM, XPS, nitrogen adsorption, a gravimetric adsorption system, FT-IR spectroscopy and temperature programmed desorption techniques. Transition metal oxides were mainly incorporated on their surface and the incorporation of iron and nickel oxides to the hydrotalcites increased their adsorption amounts of nitrogen dioxide. The dispersion of iron oxide on the hydrotalcites was effective in increasing the amount of nitrogen dioxide adsorption, while too much amount of iron oxide incorporation reduced the amount of nitrogen dioxide adsorption due to masking of surface basic sites by agglomerated iron oxide. Although the incorporation of iron oxide to the hydrotalcites lowered the adsorption strength of nitrogen dioxide, the incorporation of it with a proper amount enhanced the amount of nitrogen dioxide adsorption and the stability against the hydrothermal treatment.

Effects of Crack Resistance Properties of Ozone-treated Carbon Fibers-reinforced Nylon-6 Matrix Composites (탄소섬유의 오존처리가 나일론6 기지 복합재료의 크랙저항에 미치는 영향)

  • Han, Woong;Choi, Woong-Ki;An, Kay-Hyeok;Kim, Hong-Gun;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.363-369
    • /
    • 2013
  • In this work, the effects of ozone treatments on mechanical interfacial properties of carbon fibers-reinforced nylon-6 matrix composites were investigated. The surface properties of ozone treated carbon fibers were studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of ozone-treated carbon fiber/nylon-6 composites were observed by scanning electron microscope (SEM). As a result, $K_{IC}$ of the ozone-treated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites due the enhanced $O_{1s}/C_{1s}$ ratio of the carbon fiber by the ozone treatments. This result concludes that the mechanical interfacial properties of nylon-6 matrix composites can be controlled by suitable ozone treatments on the carbon fibers.

Characteristics of Plasma Polymer Thin Films for Low-dielectric Application

  • Cho, S.J.;Boo, J.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.124-124
    • /
    • 2011
  • This study investigated the interaction of varied plasma power with ultralow-k toluene-tetraethoxysilane (TEOS) hybrid plasma polymer thin films, as well as changing electrical and mechanical properties. The hybrid thin films were deposited on silicon(100) substrates by plasma enhanced chemical vapor deposition (PECVD) system. Toluene and tetraethoxysilane were utilized as organic and inorganic precursors. In order to compare the electrical and the mechanical properties, we grew the hybrid thin films under various conditions such as rf power of plasma, bubbling ratio of TEOS to toluene, and post annealing temperature. The hybrid plasma polymer thin films were characterized by Fourier transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), nanoindenter, I-V curves, and capacitance. Also, the hybrid thin films were analyzed by using ellipsometry. The refractive indices varied with the RF power, the bubbling ratio of TEOS to toluene, and the annealing temperature. To analyze their trends of electrical and mechanical properties, the thin films were grown under conditions of various rf powers. The IR spectra showed them to have completely different chemical functionalities from the liquid toluene and TEOS precursors. Also, The SiO peak intensity increased with increasing TEOS bubbling ratio, and the -OH and the CO peak intensities decreased with increasing annealing temperature. The AFM images showed changing of surface roughness that depended on different deposition rf powers. An nanoindenter was used to measure the hardness and Young' modulus and showed that both these values increased as the deposition RF power increased; these values also changed with the bubbling ratio of TEOS to toluene and with the annealing temperature. From the field emission scanning electron microscopy (FE-SEM) results, the thickness of the thin films was determined before and after the annealing, with the thickness shrinkage (%) being measured by using SEM cross-sectional images.

  • PDF

Molecular Effect of PVP on The Release Property of Carvedilol Solid Dispersion

  • Oh, Myeong-Jun;Shim, Jung-Bo;Lee, Eun-Yong;Yoo, Han-Na;Cho, Won-Hyung;Lim, Dong-Kyun;Lee, Dong-Won;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.179-184
    • /
    • 2011
  • This study aimed to confirm the effect of molecular weight (MW) in solid dispersion of carvedilol with poly-vinylpyrrolidone (PVP) of various MW. Solid dispersion of carvedilol with PVP was prepared by spray-drying method. Scanning electron microscopy (SEM) was used to analyze the surface of solid dispersion samples. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to analyze the crystalline of solid dispersion. Fourier transform infrared spectroscopy (FT-IR) was used to analyze the change of chemical structure characteristic of solid dispersion. DSC and XRD show that drug crystalline was changed. FT-IR revealed that chemical structure of solid dispersion comparing the chemical structure of drug was changed. The dissolution studies of solid dispersion presented at simulated gastric juice (pH 1.2). The dissolution rate of solid dispersion was dramatically enhanced than pure drug and the MW of PVP has an effect on the release property of carvedilol in solid dispersion. In conclusion, the present study has confirmed the effect of MW of PVP on release property of solid dispersion formulation of carvedilol with PVP.