• 제목/요약/키워드: Surface-damaged phenomenon

검색결과 22건 처리시간 0.028초

Degradation Phenomena of Wooden Pillars in the Main Hall of the Fengguo Monastery, Yixian, Liaoning, China - Scientific Investigation with XRD, IC, and FTIR Analysis -

  • Zhou, Yishan;Matsui, Toshiya;Liu, Cheng;Wang, Fei
    • 보존과학회지
    • /
    • 제36권1호
    • /
    • pp.15-27
    • /
    • 2020
  • The Main Hall of the Fengguo monastery in Yixian county, Liaoning province, China, is the best preserved and largest wooden Buddhist structure, typical of the Liao dynasty style, in China. However, some degradation to the timber frame of the Main Hall has been noted, and this is causing concern in terms of the long-term preservation of the structure. In this study, wooden pillars showing the degradation phenomena of whitening, for areas in contact with the stone floor, and extensive surface damage at higher locations(mostly above 1 m) have been examined. Samples taken from wooden pillar surfaces were analyzed using X-ray powder diffraction, Fourier-transform infrared spectroscopy(FTIR), ion chromatography, and pH measurements. With respect to the whitening phenomenon, we found inorganic calcium precipitates and oxalate ions, along with higher pH values. These symptoms indicated that chemical changes were taking place in response to alkaline conditions, suggesting that alkaline mixtures with calcium content in the foundations may be responsible. Regarding the upper surface-damaged areas, no valid evidence for chemical degradation was found using FTIR analysis, while damaged areas exhibited the presence of more bat guano-related materials than which were apparent in undamaged areas. The occurrence of this surface-damaged phenomenon has therefore been attributed to physical damage caused by bat activity over long periods of time.

우레탄 아크릴 코팅 소재의 표면 색상 및 모폴로지가 긁힘 거동에 미치는 영향 (Effects of Surface Color and Morphology on the Mar Behaviors of Urethane-Acrylate Coatings)

  • 정원영;원종일
    • 폴리머
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2014
  • 표면 색상과 모폴로지가 우레탄-아크릴 코팅 소재 표면의 긁힘 거동에 미치는 영향을 조사하였다. 동일한 실험 조건에서, 흰색, 적색, 검정색 시험편의 순으로 긁힘 저항성이 우수함을 보였다. 이런 결과는 명암 대비효과를 가지고 설명될 수 있다. 즉 검정색 시험편의 경우, 긁힘이 생성된 손상 영역은 빛을 확산 반사하여 백화현상이 일어나고, 그 결과 주변 검정색과 대비되어 더욱 뚜렷이 구별된다. 반면, 흰색 시험편은 주변 흰색이 보호색 역할을 하여, 긁힘 손상 부위를 인지하기 어렵게 된다. 광택도가 높은 시험편 표면일수록 에틸렌, 실리카 성분 및 카르보닐 그룹의 증가를 관찰할 수 있었다. 실리카 입자에 의한 표면 강성의 증가와 산화에 의한 카르보닐기 생성은 긁힘 저항성의 증가를 유도하고, 폴리에틸렌 왁스의 증가는 표면을 매끄럽게 하여 광택도의 향상에 기여한 것으로 보인다. 연구결과를 바탕으로 우레탄-아크릴 코팅 소재의 긁힘 저항성을 향상시킬 수 있는 기술적 접근 방법에 대해 토의하였다.

CMOS 소자를 위한 NiSi의 Surface Damage 의존성 (The Dependency of Surface Damage to NiSi for CMOS Technology)

  • 지희환;안순의;배미숙;이헌진;오순영;이희덕;왕진석
    • 한국전기전자재료학회논문지
    • /
    • 제16권4호
    • /
    • pp.280-285
    • /
    • 2003
  • The influence of silicon surface damage on nickel-silicide (NiSi) has been characterized and H$_2$ anneal and TiN rapping has been applied to suppress the electrical, morphological deterioration phenomenon incurred by the surface damage. The substrate surface is intentionally damaged using Ar IBE (Ion beam etching) which can Precisely control the etch depth. The sheet resistance of NiSi increased about 18% by the surface damage, which is proven to be mainly due to the reduced silicide thickness. It is shown that simultaneous application of H: anneal and TiN capping layer is highly effective in suppressing the surface damage effect.

Failure Analysis and Countermeasures of SCM435 High-Tension Bolt of Three-Step Injection Mold

  • Yun, Seo-Hyun;Nam, Ki-Woo
    • 한국산업융합학회 논문집
    • /
    • 제23권4_1호
    • /
    • pp.531-539
    • /
    • 2020
  • When injection mold is repeatedly used for mass production, fatigue phenomenon due to cyclic stress may occur. The surface and interior of structure might be damaged due to cyclic stress or strain. The objective of this study was to analyze failure of SCM435 high-tension bolts connecting upper and lower parts of a three-stage injection molding machine. These bolts have to undergo an accurate heat treatment to prevent the formation of chromium carbide and the action of dynamic stresses. Bolts were fractured by cyclic bending stress in the observation of ratchet marks and beach marks. Damaged specimen showed an acicular microstructure. Impurity was observed. Chromium carbide was observed near the crack origin. Both shape parameters of the Vickers hardness were similar. However, the scale parameter of the damaged specimen was about 20% smaller than that of the as-received specimen. Much degradation occurred in the damaged specimen. Bolts should undergo an accurate heat treatment to prevent the formation of chromium carbide. They must prevent the action of dynamic stresses. Bolts need accurate tightening and accuracy of heat treatment and screws need compression residual stress due to peening.

나노초 레이저 가공에서 초음파 진동이 가공표면에 미치는 영향 (The Effects of Ultrasonic Vibration on Surface Finish in Nano-second Laser Machining)

  • 강봉철;김건우;조성학;박종권;양민양
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.402-406
    • /
    • 2010
  • Conventionally, the machined surface roughness in nano-second(ns) laser machining is damaged and rough due to thermal effects. To obtain the improved surface finish, the ultrasonic vibration is applied to ns-laser machining. The ultrasonic vibration jig is developed to apply the ultrasonic high precision motion to workpieces. And then the ns-laser machining is conducted to compare the effects of the ultrasonic vibration. The results show that the surface roughness with ultrasonic vibration is smoother than that without the vibration. The phenomenon could be explained as enhancement of heat transfer by ultrasonic vibration.

The Material Analysis and Conservation of Porcelain Enamel - Focus of Porcelain Enamel Excavated at Former President Yoon Bosun's Birthplace -

  • Lee, Jung-Min
    • 보존과학회지
    • /
    • 제35권1호
    • /
    • pp.33-40
    • /
    • 2019
  • During the conservation and maintenance of the birthplace center yard of President Asan Yoon Bosun, four porcelain enamel dishware were excavated from the central yard well. The glaze layer of excavated enamel was severely damaged; hence, the conservation process was done rapidly. In addition, scientific investigation and analysis were conducted to confirm the material properties of the glaze layer. It was confirmed that the outer surface was inverted and dried, while the inner surface was upright and fired during the glazing and drying process by measuring the film thickness. By examining the breakup phenomenon, the breaking up of the white enamel on the colored enamel was confirmed. This indicates that the colored glaze rose to the surface depending on the density of the colored glaze and white glaze. The investigation of the cross-section of the film confirmed that the lower layer formed according to the bonding properties with metal during the glazing process. Analysis of the constituents of the identified lower layer confirmed that there are differences between the specific components of the metal oxide of the lower layer and the surface color development of the upper layer.

두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸 (Wear of UHMWPE Pins Against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.167-172
    • /
    • 2002
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, fur the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steef discs.

두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸 (Wear of UHMWPE Pins against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions)

  • 이권용;김석영;김신윤
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.67-71
    • /
    • 2000
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, for the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steel disks.

  • PDF

摩擦 接觸으로 인한 Fretting에 대한 연구 (An Analysis of Fretting by the Frictional Contact)

  • 이대희;최동훈;윤갑영;임장근
    • Tribology and Lubricants
    • /
    • 제6권1호
    • /
    • pp.99-107
    • /
    • 1990
  • Most of machines and structures contain the elements which contact each other directly. When these elements subjected to vibration or repeated load, local relative movement occurs between the elements in contact which results in, a kind of wear. In order to know the factors which govern fretting, we have to analyze the phenomenon of microslip which causes fretting by using a general and efficient method from a viewpoint of contact mechanics. Based on the results of analysis, it is necessary to propose the way of minizing fretting which is one of the most significant surface failure. In this report, a general and efficient algorithm is applied to analyze the contact problem of the bolted joint, which is one of the typical elements damaged by fretting, with ratios of plate thickness, the ratios of Young's moduli, the ratios of the plate thickness to bolt radius varied. Finally, the ways of minizing fretting for the boked joint are suggested.

800℃ 조건에서의 시멘트 경화체의 균열 특성 (Cracking Behavior of Cement and Concrete Damaged by High Temperature of 800℃)

  • 지우람;박지웅;신기돈;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.26-27
    • /
    • 2017
  • In this study, the cracking characteristics of cured pastes at 800℃ were investigated by X-ray CT. The test specimens were fabricated with and without aggregate, and the heating rate condition was applied at rapid heating (10.0℃/min). It is considered that the rapid heating condition does not cause a temperature gradient phenomenon because the temperature difference between the surface and the center of the sample is small due to a low heating rate unlike an actual fire. The cracking condition of the specimens without aggregate was more severe than that of specimens with aggregate.

  • PDF