• 제목/요약/키워드: Surface-Coated Particle

검색결과 246건 처리시간 0.023초

표면 개질된 도공안료가 도공지의 특성에 미치는 영향 (The Effects of Surface-Modified Pigment on the Properties of Coated Paper)

  • 이희명;민동진;이용규;조준형;김용식
    • 펄프종이기술
    • /
    • 제35권3호
    • /
    • pp.13-20
    • /
    • 2003
  • This study was carried out to investigate the effect of surface modified pigments on the properties of coated paper. The selected core particle(clay, talc) and fine particle(TiO$_2$) were modified by hybridization. The optical properties of modified pigments, rheological properties of coating color, and optical properties of coated paper were investigated. It was found that particles formed sphere-like shape and became more uniform during the surface modification in the hybridization system. As a result, It was estimated that surface modification of TiO$_2$ turned out to be more effective in improving optical properties of pigment and coated paper than simply blending it.

표면 코팅 입자에 의한 석탄화력 발전용 보일러 파울링 수치적 연구 (Computational Study of Fouling Deposits Due to Surface-Coated Particles in Coal-Fired Power Utility Boilers)

  • 이병은;유갑종;신세현;권순범
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.474-481
    • /
    • 2002
  • Fouling deposits due to surface-coated particles have been calculated using CFD techniques. The sticking probabilities of the surface-coated particles are also evaluated on the basis of an energy balance. The sticking probabilities of the deposit surface are also included in the prediction of the deposition occurring through the multiple impaction of particles with the deposit surface. The sticking probability of an impacting particle is expressed in terms of such parameters as particle viscosity, surface tension, impact velocity, impact angle and the thickness of the sticky layer on a particle. Particulate behavior around a tube in cross flow was studied using the Lagrangian approach. Three important parameters i.e. impact velocity, impact angle, and particulate concentration, were used in the prediction of deposition rate. The computational predictions were found to be in good agreement with the experimental data.

시일과 코팅된 스틸면 사이의 구형 입자에 의한 접촉해석 (Contact Analysis Between Rubber Seal, a Spherical Particle and Coated Steel Surface)

  • 박태조;조현동
    • Tribology and Lubricants
    • /
    • 제25권4호
    • /
    • pp.225-230
    • /
    • 2009
  • Seals are very useful machine components in protection of leakage of lubricant or working fluid, and incoming of debris from outside. Various elastomer are widely used as sealing materials and the shaft surfaces are generally coated with high hardness material after heat treatment. It is generally known that the foreign debris and wear particles get stuck into sealing surface, the steel shaft surface can be damaged and worn by mainly abrasive wear. In this paper, using MARC, contact analysis are conducted to show the hard coated steel shaft surface can be fatigue failed by very small elastic particle intervened between seal and steel surface. Variations of contact and von-Mises stress distributions and contact half-widths with interference and coating thickness are presented. The maximum von-Mises stress occurs always in the coating layer or between coated layer/substrate interface. Therefore the coated sealing surface can be fatigued and then failed by very small particles. The results can be used in design of sealing surface and further studies are required.

Squeeze Casting법에 의해 제조된 A356/coated SiC복합재료의 미세조직과 기계적 특성에 관한 연구 (A Study on Microstructures and Mechanical Properties of A356/coated SiC Composites Fabricated by Squeeze Casting)

  • 이경구;이도재
    • 한국주조공학회지
    • /
    • 제14권5호
    • /
    • pp.429-437
    • /
    • 1994
  • Influence of interfacial structure between matrix and particle in A356/coated SiC composite fabricated by squeeze casting method was studied. Experimental variables are types of coated metallic film on SiC particles such as Cu, Ni-P, and applied pressure for squeeze casting. It was found that coating treatment on SiC particles improves the wetting of liquid A356 alloy on SiC particles. SiC particle distribution is very homogeneous in A356 matrix alloy which is fabricated by squeeze casting. Analysing the surface morphology of fractured A356/coated SiC, it was concluded that metallic thin film by coating treatment on SiC particle improves the interfacial bonding between particle and matrix, and so does on mechanical properties such as tensile strength. However, there was on significant difference in hardness between those composite made of as-received SiC particle and coated SiC particle.

  • PDF

The Electrorheological and Dielectric Behaviors of Conducting Polymer-coated Poly(ethyl methacrylate) Suspensions

  • Kim, Young-Dae;Park, Dong-Hyup;Nam, Suk-Woo;Park, Tae-Jin
    • Macromolecular Research
    • /
    • 제10권4호
    • /
    • pp.215-220
    • /
    • 2002
  • The electrorheological (ER) and dielectric behaviors of the polypyrrole(PPy)-coated poly(ethyl methacrylate)(PEMA) suspensions in mineral oil were investigated. PPy was coated on PEMA particles to enhance the particle polarization, which would lead to the enhanced ER response. Various PPy-coated PEMA particles were synthesized by controlling the oxidant amount during the pyrrole polymerization, and the ER responses of their suspensions were investigated. The ER response initially increases with the oxidant amount, passes through a maximum, and then decreases with the oxidant amount. The initial increase in the ER response with oxidant amounts is due to the enhanced particle polarization with the increased particle surface conductivity. The dielectric properties of the corresponding suspensions support that the ER enhancement arises from the enhanced particle polarization. The decrease in the ER response at large oxidant amounts seems to arise from the increased conduction between the PPy-coated PEMA particles.

Carbonate 침전법을 이용한 α-알루미나의 나노파티클 코팅 (Nano Particle Coatings on α-alumina Powders by a Carbonate Precipitation)

  • 임종민;김상우
    • 한국분말재료학회지
    • /
    • 제14권2호
    • /
    • pp.145-149
    • /
    • 2007
  • Nanocrystalline transient aluminas (${\gamma}$-alumina) were coated on core particles (${\gamma}$-alumina) by a carbonate precipitation and thermal-assisted combustion, which is environmentally friend. The ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of transient aluminas was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The crystalline size and morphology of the synthetic, AACH, were greatly dependent on pH and temperature. AACH with a size of 5 nm was coated on the core alumina particle at pH 9. whereas rod shape and large agglomerates were coated at pH 8 and 11, respectively. The AACH was tightly bonded coated on the core particle due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of the core alumina powder. The synthetic precursor successfully converted to amorphous- and ${\gamma}$-alumina phase at low temperature through decomposition of surface complexes and thermal-assisted phase transformation.

AIP-TiN 코팅에서 증착시간이 SKH51과 SKD11 강의 표면특성에 미치는 영향에 관한 비교 연구 (Comparative Study on Effect of the Surface Characteristics of the SKH51 and SKD11 Steels with Deposition Times by AIP-TiN Coating)

  • 김해지;김남경
    • 한국기계가공학회지
    • /
    • 제7권1호
    • /
    • pp.67-74
    • /
    • 2008
  • In this paper, the surface characteristics of the AIP-TiN coated of the SKH51 and SKD11 steels under various deposition times are presented with emphasis on the comparison of the two materials. The micro-particle, the surface roughness, the micro-hardness, the coated layer thickness, the atomic distribution of Ti, N and Fe elements and the adhesion are measured for various deposition times. It has been shown that the micro-particle, the surface roughness, the coated layer thickness and the atomic distribution of Ti, N and Fe elements are similar for the two cases regardless of the test deposition time from 10 to 180 minutes. However, it has been shown that the micro-hardness and the adhesion of the SKH51 steel are higher than the SKD11 steel, indicating that they are much affected by the hardness of the material to be coated.

  • PDF

은 코팅 구리 덴드라이트 필러 제조 시 은 시드층 형성을 위한 갈바닉 치환반응 pH 제어 및 은함량에 따른 전자파 차폐 특성 (Electromagnetic Interference Shielding Effectiveness Properties of Ag-Coated Dendritic Cu Fillers Depending on pH of Galvanic Displacement Reaction for Ag Seed Layer and Contents of Deposited Ag Layer)

  • 임동하;박수빈;정현성
    • 한국표면공학회지
    • /
    • 제51권5호
    • /
    • pp.263-270
    • /
    • 2018
  • Ag-coated Cu dendrites were prepared as a filler for an electromagnetic interference shielding application. Ag layers on the Cu dendrites was coated by two approaches. One is a direct autocatalytic plating with a reducing agent. The other approach was achieved by two-step plating, a galvanic displacement reaction to form Ag seed layers on Cu following by an autocatalytic plating with a reducing agent. The procedure-dependent average particle size and tap density of Ag-coated Cu dendrites were characterized. The electrical resistance and electromagnetic interference shielding effect (EMI SE) were analyzed with the Ag-coated Cu dendrites prepared in the two approaches. Additionally, the content of the Ag coated on Cu dendrites was controlled from 2% to 20%. The electrical resistance and EMI SE were critically determined by Ag contents coated on Cu.

시일과 코팅된 스틸면 사이의 구형 입자에 의한 미끄럼 접촉 해석 (Sliding Contact Analysis of a Spherical Particle between Rubber Seal and Coated Steel Counterface)

  • 박태조;이준혁
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.283-288
    • /
    • 2012
  • In this study, a new sliding contact problem involving an elastomeric seal, a spherical particle and a hard coated steel counterface was modeled to investigate the detailed wear mechanisms related to the sealing surface. The model was also used to design the optimum coating conditions. A three-dimensional finite element contact problem was modeled and analyzed using the nonlinear finite element code, MARC. The deformed steel surface and stress distributions are presented for different coating layers and thicknesses. When the coating thickness is relatively small, the entrapped particle produces surface plastic deformations such as groove and torus. In addition, the sealing surface can be damaged by abrasive wear as well as fatigue wear. For a relatively thick and multi-layered coating, on the other hand, surface plastic deformation does not occur, and the amount of abrasive and fatigue wear is reduced. Therefore, the proposed contact model and results can be used in the design of various sealing systems, further intensive studies are required.

가수분해법에 의한 알루미나 코팅 지르코니아 분말의 제조 (Preparation of Alumina Coated Zirconia Powder by Hydrolysis of Aluminum Butoxide)

  • 이종국;김윤수;김환
    • 한국세라믹학회지
    • /
    • 제32권12호
    • /
    • pp.1401-1407
    • /
    • 1995
  • Zirconia powder coated with alumina was prepared by hydrolysis of alumina butoxide. The coated powder was obtained by a hydrolysis reaction between the adsorbed water on the surface of zirconia particles and aluminum sec-butoxide. Amorphous aluminum hydroxide was uniformly coated on the surface of zirconia particles with the thickness of about 30 nm. The shape and distribution of aluminum hydroxide was varied with an existence of surfactant. The coated layer of aluminum hydroxide consists of the fine particle size, and the zirconia powder coated by alumina hydroxide have the large specific surface area of 120 $m^2$/g, compared with that of starting zirconia powder.

  • PDF