DOI QR코드

DOI QR Code

Electromagnetic Interference Shielding Effectiveness Properties of Ag-Coated Dendritic Cu Fillers Depending on pH of Galvanic Displacement Reaction for Ag Seed Layer and Contents of Deposited Ag Layer

은 코팅 구리 덴드라이트 필러 제조 시 은 시드층 형성을 위한 갈바닉 치환반응 pH 제어 및 은함량에 따른 전자파 차폐 특성

  • Im, Dongha (Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Su-Bin (Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, Hyunsung (Korea Institute of Ceramic Engineering and Technology)
  • 임동하 (한국세라믹기술원 나노융합소재센터) ;
  • 박수빈 (한국세라믹기술원 나노융합소재센터) ;
  • 정현성 (한국세라믹기술원 나노융합소재센터)
  • Received : 2018.08.24
  • Accepted : 2018.10.25
  • Published : 2018.10.31

Abstract

Ag-coated Cu dendrites were prepared as a filler for an electromagnetic interference shielding application. Ag layers on the Cu dendrites was coated by two approaches. One is a direct autocatalytic plating with a reducing agent. The other approach was achieved by two-step plating, a galvanic displacement reaction to form Ag seed layers on Cu following by an autocatalytic plating with a reducing agent. The procedure-dependent average particle size and tap density of Ag-coated Cu dendrites were characterized. The electrical resistance and electromagnetic interference shielding effect (EMI SE) were analyzed with the Ag-coated Cu dendrites prepared in the two approaches. Additionally, the content of the Ag coated on Cu dendrites was controlled from 2% to 20%. The electrical resistance and EMI SE were critically determined by Ag contents coated on Cu.

Keywords

PMGHBJ_2018_v51n5_263_f0001.png 이미지

Fig. 1. Ag-coated Cu dendritic powder synthesis and paste manufacturing process.

PMGHBJ_2018_v51n5_263_f0002.png 이미지

Fig. 2. Particle size distribution and tap density according to the synthesis process of Ag-coated Cu dendritic powders: (a) direct plating, (b) 2-step plating (pH 4), (c) 2-step plating (pH 1) and (d) comparison of particle size distribution and tap density according to synthesis process.

PMGHBJ_2018_v51n5_263_f0003.png 이미지

Fig. 3. Ag-coated Cu dendritic powders by 2-step electroless plating (pH 1): (a) low magnification SEM image, (b) high magnification SEM image, (c) Cu EDAX mapping, (d) Ag EDAX mapping.

PMGHBJ_2018_v51n5_263_f0004.png 이미지

Fig. 5. EMI SE properties at 1 GHz and resistance according to Ag content of Ag-coated Cu dendritic powders.

PMGHBJ_2018_v51n5_263_f0005.png 이미지

Fig. 4. (a) sample prepared for the evaluation of electromagnetic shielding properties, and (b) EMI SE properties at 1 GHz and resistance of Ag-coated Cu dendritic powders according to synthesis process

References

  1. C.-Y. Huang and J.-F. Pai, Optimum conditions of electroless nickel plating on carbon fibres for EMI shielding effectiveness of ENCF/ABS composites, Eur. Polym. J. 34 (1998) 261-267. https://doi.org/10.1016/S0014-3057(96)00248-0
  2. J.A. Pomposo, J. Rodriguez and H. Grande, Polypyrrole-based conducting hot melt adhesives for EMI shielding applications, Synth Met. 104 (1999) 107-111. https://doi.org/10.1016/S0379-6779(99)00061-2
  3. S.-S. Tzeng and F.-Y. Chang, EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites, Mater. Sci. Eng. A. 302 (2001) 258-267. https://doi.org/10.1016/S0921-5093(00)01824-4
  4. G.B. Cheng, Solution synthesis of copper microflowers, ELECTRON MATER LETT. 5 (2009) 201-204. https://doi.org/10.3365/eml.2009.12.201
  5. M. Haque and M. Quamruzzaman, Survey on Effect of EMF Emitted by CRT Computer Monitors in Bangladesh, Univers. J. Electr. Electr. Eng. 3 (2015) 149-158. https://doi.org/10.13189/ujeee.2015.030504
  6. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements, Sens. Actuator B-Chem. 3 (1991) 147-155. https://doi.org/10.1016/0925-4005(91)80207-Z
  7. S. Geetha, K. Satheesh Kumar, C.R. Rao, M. Vijayan and D. Trivedi, EMI shielding: Methods and materials-A review, J Appl Polym Sci. 112 (2009) 2073-2086. https://doi.org/10.1002/app.29812
  8. W. Shen, X. Zhang, Q. Huang, Q. Xu and W. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity, Nanoscale. 6 (2014) 1622-1628. https://doi.org/10.1039/C3NR05479A
  9. S. Jeong, S.H. Lee, Y. Jo, S.S. Lee, Y.-H. Seo, B.W. Ahn, G. Kim, G.-E. Jang, J.-U. Park and B.-H. Ryu, Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors, J.Mater. Chem. C. 1 (2013) 2704-2710. https://doi.org/10.1039/c3tc00904a
  10. W. Li, M. Chen, J. Wei, W. Li and C. You, Synthesis and characterization of air-stable Cu nanoparticles for conductive pattern drawing directly on paper substrates, J. Nanoparticle Res. 15 (2013) 1949. https://doi.org/10.1007/s11051-013-1949-y
  11. H. Jiang, K.-S. Moon, J. Lu and C. Wong, Conductivity enhancement of nano silver-filled conductive adhesives by particle surface functionalization, J Electron Mater. 34 (2005) 1432-1439. https://doi.org/10.1007/s11664-005-0202-6
  12. A. Muzikansky, P. Nanikashvili, J. Grinblat and D. Zitoun, Ag dewetting in Cu@ Ag monodisperse core-shell nanoparticles, J. Phys. Chem. C. 117 (2013) 3093-3100.
  13. M. Grouchko, A. Kamyshny and S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem. 19 (2009) 3057-3062. https://doi.org/10.1039/b821327e
  14. M. Tsuji, S. Hikino, Y. Sano and M. Horigome, Preparation of Cu@ Ag core-shell nanoparticles using a two-step polyol process under bubbling of N2 Gas, Chem. Lett. 38 (2009) 518-519. https://doi.org/10.1246/cl.2009.518
  15. X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, Electroless silver coating on fine copper powder and its effects on oxidation resistance, Mater. Lett. 57 (2003) 3987-3991. https://doi.org/10.1016/S0167-577X(03)00252-0
  16. B. Yuan, L. Yu, L. Sheng, K. An and X. Zhao, Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites, J. Phys. D. 45 (2012) 235108. https://doi.org/10.1088/0022-3727/45/23/235108
  17. S. Yang, K. Lozano, A. Lomeli, H.D. Foltz and R. Jones, Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites, Compos Part A Appl Sci Manuf. 36 (2005) 691-697. https://doi.org/10.1016/j.compositesa.2004.07.009
  18. A. Sawhney, A. Agrawal, P. Patra and P. Calvert, Piezoresistive sensors on textiles by inkjet printing and electroless plating, Mater Res Soc Symp Proc. 920 (2006).
  19. H.T. Hai, J.G. Ahn, D.J. Kim, J.R. Lee, Y. Jang, H.S. Chung and C.O. Kim: Advanced Materials Research, 2007, p. 570-574.
  20. W. Li, J.A. Virtanen and R.M. Penner, A nanometer-scale galvanic cell, J Phys Chem. 96 (1992) 6529-6532. https://doi.org/10.1021/j100195a005