• Title/Summary/Keyword: Surface wind speed

Search Result 544, Processing Time 0.025 seconds

A Statistical model to Predict soil Temperature by Combining the Yearly Oscillation Fourier Expansion and Meteorological Factors (연주기(年週期) Fourier 함수(函數)와 기상요소(氣象要素)에 의(依)한 지온예측(地溫豫測) 통계(統計) 모형(模型))

  • Jung, Yeong-Sang;Lee, Byun-Woo;Kim, Byung-Chang;Lee, Yang-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 1990
  • A statistical model to predict soil temperature from the ambient meteorological factors including mean, maximum and minimum air temperatures, precipitation, wind speed and snow depth combined with Fourier time series expansion was developed with the data measured at the Suwon Meteorolical Service from 1979 to 1988. The stepwise elimination technique was used for statistical analysis. For the yearly oscillation model for soil temperature with 8 terms of Fourier expansion, the mean square error was decreased with soil depth showing 2.30 for the surface temperature, and 1.34-0.42 for 5 to 500-cm soil temperatures. The $r^2$ ranged from 0.913 to 0.988. The number of lag days of air temperature by remainder analysis was 0 day for the soil surface temperature, -1 day for 5 to 30-cm soil temperature, and -2 days for 50-cm soil temperature. The number of lag days for precipitaion, snow depth and wind speed was -1 day for the 0 to 10-cm soil temperatures, and -2 to -3 days for the 30 to 50-cm soil teperatures. For the statistical soil temperature prediction model combined with the yearly oscillation terms and meteorological factors as remainder terms considering the lag days obtained above, the mean square error was 1.64 for the soil surfac temperature, and ranged 1.34-0.42 for 5 to 500cm soil temperatures. The model test with 1978 data independent to model development resulted in good agreement with $r^2$ ranged 0.976 to 0.996. The magnitudes of coeffcicients implied that the soil depth where daily meteorological variables night affect soil temperature was 30 to 50 cm. In the models, solar radiation was not included as a independent variable ; however, in a seperated analysis on relationship between the difference(${\Delta}Tmxs$) of the maximum soil temperature and the maximum air temperature and solar radiation(Rs ; $J\;m^{-2}$) under a corn canopy showed linear relationship as $${\Delta}Tmxs=0.902+1.924{\times}10^{-3}$$ Rs for leaf area index lower than 2 $${\Delta}Tmxs=0.274+8.881{\times}10^{-4}$$ Rs for leaf area index higher than 2.

  • PDF

A Study on Cold Water Damage to Marine Culturing Farms at Guryongpo in the Southwestern Part of the East Sea (경북 구룡포 해역에서의 냉수 발생과 어장 피해)

  • Lee, Yong-Hwa;Shim, JeongHee;Choi, Yang-ho;Kim, Sang-Woo;Shim, Jeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.731-737
    • /
    • 2016
  • To understand the characteristics and strength of the cold water that has caused damage to marine-culturing farms around Guryongpo, in the southwestern part of Korea, surface and water column temperatures were collected from temperature loggers deployed at a sea squirt farm during August-November 2007 and from a Real-time Information System for Aquaculture environment operated by NIFS (National Institute of Fisheries Science) during July-August 2015 and 2016. During the study period, surface temperature at Guryongpo decreased sharply when south/southwestern winds prevailed (the 18-26th of August and 20-22nd of September 2007 and the 13-15th of July 2015) as a result of upwelling. However, the deep-water (20-30m) temperature increased during periods of strong north/northeasterly winds (the 5-7th and 16-18th of September 2007) as a result of downwelling. Among the cold water events that occurred at Guryongpo, the mass death of cultured fish followed strong cold water events (surface temperatures below $10^{\circ}C$) that were caused by more than two days of successive south/southeastern winds with maximum speeds higher than 5 m/s. A Cold Water Index (CWI) was defined and calculated using maximum wind speed and direction as measured daily at Pohang Meteorological Observatory. When the average CWI over two days ($CWI_{2d}$) was higher than 100, mass fish mortality occurred. The four-day average CWI ($CWI_{4d}$) showed a high negative correlation with surface temperature from July-August in the Guryongpo area ($R^2=0.5$), suggesting that CWI is a good index for predicting strong cold water events and massive mortality. In October 2007, the sea temperature at a depth of 30 m showed a high fluctuation that ranged from $7-23^{\circ}C$, with frequency and spectrum coinciding with tidal levels at Ulsan, affected by the North Korean Cold Current. If temperature variations at the depth of fish cages also regularly fluctuate within this range, damage may be caused to the Guryongpo fish industry. More studies are needed to focus on this phenomenon.

Investigation of PM2.5 Pollution Episodes in Gwangju (광주지역 PM2.5의 고농도 오염현상 조사)

  • Yu, Geun-Hye;Cho, Sung-Yong;Bae, Min-Suk;Lee, Kwon-Ho;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.269-286
    • /
    • 2015
  • 24-hr integrated $PM_{2.5}$ measurements were performed between December 2013 and October 2014 at an urban site in Gwangju and the collected samples were analyzed for organic carbon (OC), elemental carbon (EC), ionic species, and elemental species. Objectives of this study were to identify $PM_{2.5}$ pollution episodes, to characterize their chemical components, and to examine their probable origins. Over the course of the study period, average $PM_{2.5}$ concentration was $37.7{\pm}23.6$ $(6.0{\sim}121.5){\mu}g/m^3$. Concentrations of secondary ionic species; $NH_4{^+}$, $NO_3{^-}$, and $SO_4{^{2-}}$ was on average $5.54{\mu}g/m^3$ (0.28~ 20.86), $7.60{\mu}g/m^3$ (0.45~ 33.53), and $9.05{\mu}g/m^3$ (0.50~ 34.98), accounting for 13.7% (4.6~ 22.7), 18.6% (2.9~ 44.8), and 22.9% (4.9~ 55.1) of the $PM_{2.5}$ concentration, respectively. Average OC and EC concentrations were $5.22{\mu}g/m^3$ and $1.54{\mu}g/m^3$, taking possession of 4.6 and 22.2% (as organic mass) of the $PM_{2.5}$, respectively. Frequencies at which 24-hr averaged $PM_{2.5}$ exceeded a 24-hr averaged Korean $PM_{2.5}$ standard of $50{\mu}g/m^3$ (termed as an "episode" in this study) were 30, accounting for 21.3% of total 141 measurements. These pollution episodes were mostly associated with haze phenomenon and weak surface wind speed. It is suggested that secondary formation of aerosol was one important formation mechanism of the episodes. The episodes were associated with enhancements of organic mass, $NO_3{^-}$ and $SO_4{^{2-}}$ in winter, of $NO_3{^-}$ and $SO_4{^{2-}}$ in spring, and of $SO_4{^{2-}}$ in summer. Potential source contribution function results indicate also that $PM_{2.5}$ episodes were likely attributed to local and regional haze pollution transported from northeastern China in winter, to atmospheric processing of local emissions rather than long-range transport of air pollutants in spring, and to the $SO_4{^{2-}}$ driven by photochemistry of $SO_2$ in summer.

A Study of the Work Efficiency in the High Altitude according to Climatic Elements (지역별 기후에 따른 고소작업가능률 산정 - 서울, 인천, 부산 지역을 중심으로 -)

  • Lee, Hyun-Soo;Cho, Sung-Jun;Park, Moon-Seo;Hwang, Sung-Joo;Kim, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.3
    • /
    • pp.67-77
    • /
    • 2012
  • O Having a highly reliable plan for the process and estimating an accurate construction period during the early stages of a construction project can prevent falsifying the plan and reduce the occurrence of construction delays. Moreover, it allows a succession of swift and accurate decisions to happen. The difficulty in obtaining an accurate estimate of the construction period is especially prominent in high-rise building projects because the works involved are very complicated and costly. As such, it is important that research is done to find out the impacts a reliable plan and good estimate of the construction period can bring with regards to the monthly work efficiency and success of a high-rise building project. However, due to the difference in climatic conditions at high altitude and surface level, the current way of calculating work efficiency in a typical project is inaccurate for a high-rise building project. With that, this paper aims to compute the work efficiency with height, taking into consideration the change in climatic elements at different working heights. A comparison of the results according to the climatic features of each city can also be done in this paper. According to the results calculated in work altitudes, the work efficiency in Busan falls the most. On the other hands, the work efficiency in Seoul falls the least. The reason these results are shown is the influence of wind speed at high altitude. The estimation of work efficiency at high altitude would be used for estimating construction period, feasibility studies, and selecting a city of high-rise building projects.

Study on Ammonia Emission Characteristic of Pig Slurry (양돈 슬러리의 암모니아 발생 특성에 관한 연구)

  • Lee S.H.;Yun N.K.;Lee K.W.;Lee I.B.;Kim T.I.;Chang J.T.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Ammonia emission from swine production process originates from three major sources: manure storage facility, swine housing, and land application of manure. Most of the ammonia gas that are emitted from swine production operations is the by-product of aerobic or anaerobic decomposition of swine waste by microorganism. Knowing the ammonia emission rate is necessary to understand how management practices or alternative manure handling process could reduce impacts of this emission on the environment and neighbors. Ammonia gas emission from pig slurry is very difficult to predict because it is affected by many factors including wind speed of slurry surface, temperature or pH of the swine slurry, sort breed differences and classes, and diets. This study was carried out to effects of pH and temperature on ammonia gas emission from growing-finishing pig slurry. Treated far slurry in this study were pH and temperature. Results showed that pH of slurry variable changes 5, 6, 7, 8 upon an addition of NaOH and $HNO_3$, respectively. The temperature of the slurry which was contained in a water bath maintained at increasing levels ranging from 10 to $35^{\circ}C$. Ammonia emission rate of influenced pH and temperature such that the increase in pH or temperature resulted to an increase in ammonia emission. The ammonia gas was not detected at pH 5 and 6. Moreover, at a slurry of pH 8, the ammonia ranged from 28 to 60ppm and 8-29 ppm at slurry pH of 7 while temperature was 13 to $33^{\circ}C$. When slurry pH was>6, the ammonia emission was significantly increased according to rise in temperature in contrast to acid treatment of the pH. There was also a significantly increase in ammonia emission relative to slurry pH of 7 to 8. The above findings showed that to effectively reduce ammonia emission from slurry of growing-finishing pigs, the pH and temperature should be maintained a low levels.

  • PDF

Impacts of the High Resolution Land Cover Data on the 1989 East-Asian Summer Monsoon Circulation in a Regional Climate Model (지역기후모델에서 고해상도 지면피복이 1989년 동아시아 여름몬순 순환에 미치는 영향)

  • Suh, Myoung-Seok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.75-90
    • /
    • 2005
  • This study examines the impacts of land cover changes on the East Asia summer monsoon with the National Center for Atmospheric Research Regional Climate Model (NCAR RegCM2), coupled with Biosphere Atmosphere Transfer Scheme (BATS). To assess the goals, two types of land cover maps were used in the simulation of summer climate. One type was NCAR land cover map (CTL) and the other was current land cover map derived from satellite data (land cover: LCV). Warm and cold surface temperature biases of $1-3^{\circ}C$ occurred over central China and Mongolia in CTL. The model produced excessive precipitation over northern land area but less over southern ocean of the model domain. Changes of biophysical parameters, such as albedo, minimum stomatal resistance and roughness length, due to the land cover changes resulted in the alteration of land-atmosphere interactions. Latent heat flux and wind speed in LCV increased noticeably over central China where deciduous broad leaf trees have been replaced by mixed farm and irrigated crop. As a result, the systematic warm biases over central China were greatly reduced in LCV. Strong cooling of central China decreased pressure gradient between East Asian continent and Pacific Ocean. The decreased pressure gradient suppressed the northward transport of moisture from south China and South China Sea. These changes reduced not only the excessive precipitation over north China and Mongolia but also less precipitation over south China. However, the land cover changes increased the precipitation over the Korean Peninsula and the Japan Islands, especially in July and August.

Characteristics of Meteorological Conditions and Air Pollution in a Valley City on Bad Visibility Days of the Cold Half Year (한후기 계곡지형 내 도시 시정악화 발생일의 기상 및 대기오염 특성 분석)

  • Kang, Jae-Eun;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.745-759
    • /
    • 2013
  • The characteristics of meteorological conditions and air pollution were investigated in a valley city (Yangsan) on bad visibility days (from 05:00 to 09:00 LST) of the cold half year (November 2008 to April 2009). This analysis was performed using the hourly observed data of meteorological variables (temperature, wind speed and direction, relative humidity, and 2 m and 10 m temperature) and air pollutants ($NO_2$, $SO_2$, $PM_{10}$, and $O_3$). In addition, visibility data based on visual measurements and a visibility meter were used. The bad visibility days were classified into four types: fog, mist, haze, and the mixture (mist+haze). The results showed that the bad visibility days of the four types in the valley city were observed to be more frequently (about 50% of the total study period (99 days except for missing data)) than (27%) those near coastal metropolitan city (Busan). The misty days (39%) in the valley city were the most dominant followed by the hazy (37%), mixture (14%), and foggy days (10%). The visibility degradation on the misty days in Yangsan was closely related to the combined effect of high-level relative humidity due to the accumulation of water vapor from various sources (e.g. river, stream, and vegetation) and strong inversion due to the development of surface radiative cooling within the valley. On the hazy days, the visibility was mainly reduced by the increase in air pollutant (except for $O_3$) concentrations from the dense emission sources under local conditions of weaker winds from the day before and stronger inversion than the misty days. The concentrations of $NO_2$, $PM_{10}$, and $SO_2$ (up to +36 ppb, $+25{\mu}g/m^3$, and +7 ppb) on the hazy days were a factor of 1.4-2.3 higher than those (+25 ppb, $+14{\mu}g/m^3$, and +3 ppb) on the misty days.

A Synoptic Climatological Study on the Distribution of Winter Precipitation in South Korea (韓國의 冬季 降水 分布에 關한 綜觀氣候學的 硏究)

  • Park, Byong-Ik;Yoon, Suk-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.1
    • /
    • pp.31-46
    • /
    • 1997
  • The purposes of this paper are to classify the spatial distribution types of precipitation by making daily isohyetal maps based on the winter daily precipitation and to analyse both the distributional characteristics of precipitation during the winter in South Korea and the synoptic characteristics related to them. Also, the correspondence between the spatial distribution types of precipitation and the synoptic characteristics occuring among them is examined with regards to pressure patterns and then precipitation distribution types. In addition, the characteristics of the pressure fields and temperature fields in 850hPa, 700hPa, and 500hPa level were analysed to find out the difference between the Ullung-do type and the Ullung-do${\cdot}$Honam type, which have similar characteristics on the surface weather map. As a result, the Ullung-do area showed a high frequency of occurrence regardless of precipitation classes, the East Coast area revealed a higher frequency of occurrence in over the 5mm section, while the Honam area had high frequency of occurrence in the 1~5mm section. There are twelve distribution types of precipitation during the winter. These distribution types show clear changes according to the season. The difference in precipitation distribution between the Ullung-do type and the Ullung-do${\cdot}$Honam type has a close relationship with the aspect of the upper cold air advection rather than the direction and the speed of the wind.

  • PDF

Performance Evaluation of Paving Blocks Based Ambient Temperature Reduction Using a Climatic Environment Chamber (기후환경챔버를 활용한 블록의 공기온도 저감 성능평가)

  • Ko, Jong Hwan;Park, Dae Geun;Kim, Yong Gil;Kim, Sang Rae
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.187-192
    • /
    • 2017
  • This study evaluated the reduction performance of ambient temperature and the amount of evaporation that takes place depends on the temperature difference of paving blocks which are used in the sidewalk, roadway, parking lot, park, plaza, and etc. The water-retentive block of the LID (Low Impact Development) practice was compared with the conventional concrete block. For the quantitative performance evaluation, experiments were performed in a climatic environment chamber capable of controlling the climatic environment (solar radiation, temperature, humidity, rainfall, and snowfall). The method for performance evaluation was proposed using temperature, humidity, and ambient air of paving blocks which changes according to the solar radiation and the wind speed after the rainfall. As a result, the evaporation amount of the water-retentive block was 2.6 times higher than that of the concrete block, the surface temperature of water-retentive block was $10^{\circ}C$ lower than the concrete block, and the air temperature of water-retentive block was $4.6^{\circ}C$ lower than the concrete block. Therefore, it is analyzed that the water-retentive block with a large amount of evaporation is more effective in reducing the urban heat island phenomenon as compared with the concrete block.

Simulation Model for Estimating Soil Temperature under Mulched Condition (멀칭에 따른 지온변화 모델의 작성 및 토양온도의 추정)

  • Cui RiXian;Lee Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.119-126
    • /
    • 1999
  • A numerical model using soil surface energy balance and soil heat flow equations to estimate mulched soil temperature was developed. The required inputs data include weather data, such as global solar radiation, air temperature, wind speed, atmospheric water vapor pressure, the optical properties of mulching material, and soil physical properties. The observed average soil temperature at 50 cm depth was used as the initial value of soil temperature at each depth. Soil temperature was simulated starting at 0 hour at an interval of 10 minutes. The model reliably described the variation of soil temperature with time progress and soil depth. The correlation between the estimated and measured temperature yielded coefficient values of 0.961, 0.966 for 5cm and 10cm depth of the bare soil, respectively, 0.969, 0.965 for the paper mulched soil, and 0.915, 0.938 for the black polyethylene film mulched soil. The percentages of absolute differences less than 2$^{\circ}$C between soil temperatures measured and simulated at 10 minute interval were 97.4% and 98.5% for 5 cm and 10cm for the bare soil, respectively, and 95.8% and 97.4% for the paper mulched soil, and 70.1% and 92.5% for the polyethylene film mulched soil. The results indicated that the model was able to predict the soil temperature fairly well under mulched condition. However, in the night time, the model performance was a little poor as compared with day time due to the difficulty of accurate determination of the atmospheric long wave radiation.

  • PDF