• 제목/요약/키워드: Surface treatment system

검색결과 1,236건 처리시간 0.033초

Endocrine Disruptive Potentials in Surface Water Samples from Taihu Lake, Yangtze Delta

  • Shen, L.;Lin, G.F.;Shen, J.H.
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.319-321
    • /
    • 2001
  • Taihu Lake is a major water source for part of Yangtze Delta, which is one of the most urbanized and economically prosperous areas in China. In last couple of decades, some parts of the lake were highly polluted due to eutrophication. This study analyzed dioxin-like potential and mutagenic potential in surface water samples from Taihu Lake. The samples were prepared by XAD-2 resin procedure. A batch of biological assays, including dioxin-like potential microassay with the rat hepatocyte cell line H411E, and Ames test was employed in the research. Results showed that jour water samples have high content of dioxin-like biological potential, the highest activity TEQ to 2,3,7,8-TCDD was 48 pg/ι in sample 1. The mutagenic effect with reading-frame shifting mechanism was confirmed in 3 of 4 samples. The effective sewage treatment facilities and reliable monitoring surveillance system are urgently needed for this area.

  • PDF

상온에서 증착된 IGZO 박막의 열처리 온도에 따른 특성 (Characteristics of IGZO Films Formed by Room Temperature with Thermal Annealing Temperature)

  • 이석열;이경택;김재열;양명수;강인병;이호성
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.181-185
    • /
    • 2014
  • We investigated the structural, electrical and optical characteristics of IGZO thin films deposited by a room-temperature RF reactive magnetron sputtering. The thin films deposited were annealed for 2 hours at various temperatures of 300, 400, 500 and $600^{\circ}C$ and analyzed by using X-ray diffractometer, transmission electron microscopy, atomic force microscope and Hall effects measurement system. The films annealed at $600^{\circ}C$ were found to be crystallized and their surface roughness was decreased from 0.73 nm to 0.67 nm. According to XPS measurements, concentration of oxygen vacancies were decreased at $600^{\circ}C$. Optical band gap were increased to 3.31eV. The carrier concentration and Hall mobility were sharply increased at 600oC. Our results indicate that the IGZO films deposited at a room temperature can show better thin film properties through a heat treatment.

조직공학용 세포담체 제작을 위한 플라즈마-표면개질이 포함된 바이오프린팅 시스템 (A 3D bioprinting system and plasma-surface modification to fabricate tissue engineering scaffolds)

  • 김근형
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.3-23
    • /
    • 2017
  • The achievement of tissue engineering can be highly depending on the capability to generate complicated, cell seeded three dimensional (3D) micro/nano-structures. So, various fabrication techniques that can be used to precisely design the architecture and topography of scaffolding materials will signify a key aspect of multi-functional tissue engineering. Previous methods for obtaining scaffolds based on top-down are often not satisfactory to produce complex micro/nano-structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. However, a bioprinting method can be used to design sophisticated 3D tissue scaffolds that can be engineered to mimic the tissue architecture using computer aided approach. Also, in recent, the method has been modified and optimized to fabricate scaffolds using various natural biopolymers (collagen, alginate, and chitosan etc.). Variation of the topological structure and polymer concentration allowed tailoring the physical and biological properties of the scaffolds. In this presentation, the 3D bioprinting supplemented with a newly designed plasma treatment for attaining highly bioactive and functional scaffolds for tissue engineering applications will be introduced. Moreover, various in vivo and in vitro results will show that the fabricated scaffolds can carry out their structural and biological functionality.

  • PDF

외부의 물과 Er:YAG Laser의 작용에 의한 Dental Hard Tissue에서의 열과 역학적 효과: Free-running 방식 (Exogenous-Water-Induced Thermal and Mechanical Effects on Dental Hard Tissue by the Er:YAG Laser: Free-running Mode)

  • 권용훈
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.380-384
    • /
    • 1997
  • This study was performed to understand the exogenous-water-drop induced thermomechanical effect on the tooth in the free-running Er:YAG laser mode for the proper use of water as a laser energy absorber and coolant in dentistry. The ree-running Er:YAG laser was used in the dental hard tissue ablation study. A Microjet system was employed to dispense precise water drops. Ablation rate, recoil momentum, and temperature rise in the pulp cavity were measured with and without an exogenous water drop on the tooth surface. Exogenous water enhanced ablation rate in the thick tooth in which the ablation rate on the dry surface does not increase linearly but shows plateau. Optimal exogenous water volume was shifted from 2 nl to 4 nl as the laser energy was increased from 48 mJ to 145 mJ. The magnitude of the recoil momentum was increased as the volume of exogenous water increased. The results of this study suggest that we must pay attention to the recoil momentum or recoil pressure study or the optimal and safe usage of water in the dental treatment because these mechanical effects depend on the volume of exogenous water on the tooth surface.

  • PDF

Study of moxibustion stimulation in the ovariectomized rat model

  • Kanai, Shigeyuki;Taniguchi, Norimasa;Kanda, Kayo;Matsuhata, Izuru
    • Advances in Traditional Medicine
    • /
    • 제5권3호
    • /
    • pp.195-200
    • /
    • 2005
  • In order to examine the effectiveness of moxibustion stimulation for climacteric disturbance, we administered moxibustion stimulation to ovariectomized (OVX) rats, and compared the tail surface temperature, laboratory parameters, and the level of locomotor activity with those of untreated rats. Twenty-four female Wistar rats (8 weeks old, 160 - 180 g) were divided into three groups. The rats in the OVX-M group underwent moxibustion stimulation after ovariectomy. The rats in the OVX-C group underwent ovariectomy but did not receive moxibustion stimulation. The rats in the Normal group received neither ovariectomy nor moxibustion stimulation. The level of locomotor activity was determined by a metabolism measuring system. The tail surface temperature was significantly lower in the OVX rats before moxibustion stimulation than in the Normal group. In the OVX rats before moxibustion stimulation, there was no clear difference in the level of locomotor activity between the active and resting phases, and the pattern of locomotor activity was irregular. After moxibustion stimulation, the tail surface temperature of the OVX-M group did not significantly differ from that of the Normal group, and the pattern of locomotor activity of the OVX-M group became diphasic with clear active and resting phases, similar to that observed in the Normal group. These results demonstrate that moxibustion stimulation is effective for the treatment of climacteric disturbance.

극한 환경 MEMS용 2" 3C-SiC기판의 직접접합 특성 (Direct Bonding Characteristics of 2" 3C-SiC Wafers for Harsh Environment MEMS Applications)

  • 정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제16권8호
    • /
    • pp.700-704
    • /
    • 2003
  • This paper describes on characteristics of 2" 3C-SiC wafer bonding using PECVD (plasma enhanced chemical vapor deposition) oxide and HF (hydrofluoride acid) for SiCOI (SiC-on-Insulator) structures and MEMS (micro-electro-mechanical system) applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si (001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR (attenuated total reflection Fourier transformed infrared spectroscopy). The root-mean-square suface roughness of the oxidized SiC layers was measured by AFM (atomic force microscope). The strength of the bond was measured by tensile strength meter. The bonded interface was also analyzed by IR camera and SEM (scanning electron microscope), and there are no bubbles or cavities in the bonding interface. The bonding strength initially increases with increasing HF concentration and reaches the maximum value at 2.0 % and then decreases. These results indicate that the 3C-SiC wafer direct bonding technique will offers significant advantages in the harsh MEMS applications.ions.

박막트랜지스터 응용을 위한 SiO2 박막 특성 연구 (Studies for Improvement in SiO2 Film Property for Thin Film Transistor)

  • 서창기;심명석;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제17권6호
    • /
    • pp.580-585
    • /
    • 2004
  • Silicon dioxide (SiO$_2$) is widely used as a gate dielectric material for thin film transistors (TFT) and semiconductor devices. In this paper, SiO$_2$ films were grown by APCVD(Atmospheric Pressure chemical vapor deposition) at the high temperature. Experimental investigations were carried out as a function of $O_2$ gas flow ratios from 0 to 200 1pm. This article presents the SiO$_2$ gate dielectric studies in terms of deposition rate, refrative index, FT-IR, C-V for the gate dielectric layer of thin film transistor applications. We also study defect passivation technique for improvement interface or surface properties in thin films. Our passivation technique is Forming Gas Annealing treatment. FGA acts passivation of interface and surface impurity or defects in SiO$_2$ film. We used RTP system for FGA and gained results that reduced surface fixed charge and trap density of midgap value.

플라즈마 환원 기술을 응용한 장수명의 은나노와이어/Reduced Graphene Oxide 하이브리드 투명전극 개발 (Development of AgNW/Reduced Graphene Oxide Hybrid Transparent Electrode with Long-Term Stability Using Plasma Reduction)

  • 정성훈;안원민;김도근
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.87-91
    • /
    • 2016
  • The development of high performance transparent electrode with flexibility have been required for flexible electronics. Here, we demonstrate the silver nanowire and reduced graphene oxide hybrid transparent electrode for replacing brittle indium-tin-oxide electrode by spray coating technique and plasma reduction. The spray coating system is applied to deposit silver nanowire and over coated graphene oxide films and it has a great potential to scale-up. The resistance of silver nanowire transparent electrode is reduced by 10% and the surface roughness is decreased after graphene oxide coating. The over-coated graphene oxide is successfully reduced by $H_2$ plasma treatment and it is effective in increasing the environmental stability of electrode. The lifetime of silver nanowire and reduced graphene oxide hybrid electrode at $85^{\circ}C$ of Celsius degree of temperature and 85% of relative humidity has much increased.

유도 결합 플라즈마 스퍼터 승화법을 이용한 고속증착 시스템 (High Rate Deposition System by Inductively Coupled Plasma Assisted Sputter-sublimation)

  • 최지성;주정훈
    • 한국표면공학회지
    • /
    • 제45권2호
    • /
    • pp.75-80
    • /
    • 2012
  • A sputter-sublimation source was tested for high rate deposition of protective coating of PEMFC(polymer electrolyte membrane fuel cell) with high electrical conductivity and anti-corrosion capability by DC biasing of a metal rod immersed in inductively coupled plasma. A SUS(stainless steel) tube, rod were tested for low thermal conductivity materials and copper for high thermal conductivity ones. At 10 mTorr of Ar ICP(inductively coupled plasma) with 2.4 MHz, 300 W, the surface temperature of a SUS rod reached to $1,289^{\circ}C$ with a dc bias of 150 W (-706 V, 0.21 A) in 2 mins. For 10 min of sputter-sublimation, 0.1 gr of SUS rod was sputter-sublimated which is a good evidence of a high rate deposition source. ICP is used for sputter-sublimation of a target material, for substrate pre-treatment, film quality improvement by high energy particle bombardment and reactive deposition.

Evaluations of a Commercial CLEANBOLUS-WHITE for Clinical Application

  • Geum Bong Yu;Jung-in Kim;Jaeman Son
    • 한국의학물리학회지:의학물리
    • /
    • 제35권1호
    • /
    • pp.10-15
    • /
    • 2024
  • Purpose: This study aimed to comprehensively investigate the diverse characteristics of a novel commercial bolus, CLEANBOLUS-WHITE (CBW), to ascertain its suitability for clinical application. Methods: The evaluation of CBW encompassed both physical and biological assessments. Physical parameters such as mass density and shore hardness were measured alongside analyses of element composition. Biological evaluations included assessments for skin irritation and cytotoxicity. Dosimetric properties were examined by calculating surface dose and beam quality using a treatment planning system (TPS). Additionally, doses were measured at maximum and reference depths, and the results were compared with those obtained using a solid water phantom. The effect of air gap on dose measurement was also investigated by comparing measured doses on the RANDO phantom, under the bolus, with doses calculated from the TPS. Results: Biological evaluation confirmed that CBW is non-cytotoxic, nonirritant, and non-sensitizing. The bolus exhibited a mass density of 1.02 g/cm3 and 14 shore 00. Dosimetric evaluations revealed that using the 0.5 cm CBW resulted in less than a 1% difference compared to using the solid water phantom. Furthermore, beam quality calculations in the TPS indicated increased surface dose with the bolus. The air gap effect on dose measurement was deemed negligible, with a difference of approximately 1% between calculated and measured doses, aligning with measurement uncertainty. Conclusions: CBW demonstrates outstanding properties for clinical utilization. The dosimetric evaluation underscores a strong agreement between calculated and measured doses, validating its reliability in both planning and clinical settings.