• Title/Summary/Keyword: Surface treatment system

Search Result 1,227, Processing Time 0.033 seconds

Total Phosphorus Removal in Cattail Wetland Purifying Effluent from a Night Soil Treatment Plant during Its Initial Operation (분뇨처리장 방류수를 정화하는 부들습지의 초기운영 단계에서 총인의 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • Total phosphorus(TP) removal was examined in a surface-flow wetland constructed in April 2003 during its initial operating stage from June to November 2003. Its dimensions were 87mL by 14mW. It was a part of a four-wetland-cell treatment system constructed near the Kohung Estuarine Lake located in the southern part of Korea. Effluent from a night soil treatment plant was discharged into the wetland and purified effluent from the wetland was discharged into Sinyang Stream flowing into the Lake. Cattails(Typha angustifolia ) from natural wetlands were cut at about 40 cm height and transplanted into the wetland. An average of 25.0$m^3$/day of effluent flowed from the plant into the wetland. Water depth was maintained about 0.2m and hydraulic detention time was about 5.2 days. Average heights of the cattail stems in June and October 2003 were 47.2 and 164.6cm, respectively. The average number of stems was 10.2 stems/$m^2$ in June 2003 and 18.8 stems/$m^2$ in October 2003. Average temperature of influent and effluent ranged 23.4 and $24.2^{\circ}C$, respectively. The average TP concentrations of influent and effluent were about 1.31, 0.50mg/L, respectively. TP loading rate of influent into the wetland averaged 26.81mg/$m^2$, day and average TP loading rate of effluent was 10.04mg/$m^2$, day. Monthly average TP removal by the wetland during the warm growing season of cattails(June to September) ranged 16.28~19.57mg/$m^2$, day and during the cold senescent period (October to November) ranged 12.62~13.90mg/$m^2$, day. TP removal in the wetland continued during the cold winter months and was primarily done by sedimentation and precipitation of phosphorus rather than phosphorus absorption by cattails and microorganisms.

Joining Characteristics of Plasma Sprayed BSCCO Superconducting Coatings (플라즈마 용사 BSCCO(Bismuth Strontium Calcium Copper Oxide) 초전도 피막의 접합 특성)

  • Park, Jung-Sik;Cho, Chang-Eun;Ko, Young-Bong;Park, Kwang-Soon;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.181-186
    • /
    • 2013
  • We performed plasma spraying for 2001 (Bi:Cu = 2:1), 0212 (Sr:Ca:Cu = 2:1:2) oxide powders. $Bi_2Sr_2CaCu_2Ox$ (2212) superconductor has been prepared by PMP-AT (partial melting process-annealing treatment). The 2212 phase is synthesized between Sr-Ca-Cu oxide coating layer (0212) and Bi-Cu oxide coating layer (2001) by movement of partial melted Bi on 2001 layer and the diffusion reaction (Cu, Sr, Ca) after PMP-AT. There are two different coating layers on joining process. The one is ABAB coating layers and the other is BAAB coating layers by arrangement of 2001 (A), 0212 (B) layers. We performed heat treatment these two different coating layers processes under same PMP-AT conditions. We obtained Bi-2212 superconducting layers at each experimental condition, and the result of MPMS, the critical temperature was showed about 78 K. But the microstructure images and result of EDS as each experimental variable were showed about the qualitatively different Bi-2212 superconducting phases. We also deduced the generation mechanism of Bi-2212 superconducting layer as a result of these experimental data, microstruc ture images, EDS data and phase diagram.

Effects of Spinal Stabilization Exercises Using Visual Feedback on Gross Motor Function and Balance in Children with Cerebral Palsy

  • Kim, So Hee;Kim, Tae Ho;Hwang, Hyun Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.5
    • /
    • pp.279-285
    • /
    • 2019
  • Purpose: This study examined the effects of spinal stabilization exercises using visual feedback on the gross motor function and balance of the sitting posture in children with cerebral palsy. Methods: The subjects were 18 children with cerebral palsy aged 8-15 years in the I-III stages of the Gross Motor Function Classification System. The subjects were divided into an experimental group (n=9) and control group (n=9). The experimental group was treated with 30 minutes of neurodevelopmental treatment and 20 minutes of spinal stabilization exercises using visual feedback. The control group was treated with 30 minutes of neurodevelopmental treatment and 20 minutes of spinal stabilization exercises without visual feedback. Both groups participated in the experiment twice a week for eight weeks. The Gross Motor Function Measurement was performed to evaluate the changes between pre- and the post-intervention in gross motor function. The Seated Limit of Stability Surface Area was measured to evaluate the changes in trunk balance. Results: Both experimental and control groups showed a significant increase in the gross motor function and trunk balance (p<0.05). The experimental group showed a significant increase in gross motor function compared to the control group (p<0.05). The experimental group showed a significant increase in the dynamic trunk balance in all directions when measuring the Seated Limit of Stability Surface Area (p<0.05). Conclusion: Spinal stabilization exercises using visual feedback for the neurodevelopmental treatment of children with cerebral palsy can improve their gross motor function and trunk balance when in a sitting posture more effectively.

WETTABILITY AND DRUG DELIVERY OF FUNCTIONALLY GRADED NANO-MICRO POROUS TITANIUM SURFACE

  • Yun, Kwi-Dug;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.307-319
    • /
    • 2008
  • STATEMENT OF PROBLEM: It is known that an anodic oxidation technique, one of the methods for the implant surface treatment, remarkably increased surface area, enhanced wettability and accelerated the initial bone healing. Purpose: This study was performed to evaluate the wettability of anodized titanium surface which has a nanotubular structure, to assess osseointegration after the placement of implant with nano-size tubes on tibia of rats and to analyze quantitatively transferable rhBMP-2 on each surface. MATERIAL AND METHOD: Four different kinds of surface-treated titanium discs (polished (machined surface) group, micro (blasting surface) group, nano (anodizedmachined surface) group, and nano-micro (anodized-blasting surface) group) were fabricated (n=10). Three different media were chosen to measure the surface contact angles; distilled water, plasma and rhBMP-2 solution. After a single drop (0.025 $m{\ell}$) of solution, the picture was taken with the image camera, and contact angle was measured by using image analysis system. For the test of osseointegration, 2 kinds of anodized surface (anodized-machined surface, anodized-blasting surface) implants having 2.0 mm in diameter and 5.0 mm in length inserted into the tibia of Wistar rats. After 3 weeks, tibia were harvested and the specimens were stained with hematoxylin and eosin for histological analysis. To test the possibility of drug delivery, after soaking sample groups in the concentration of 250 ng/$m{\ell}$l of rhBMP-2 for 48 hours, the excess solution of rhBMP-2 were removed. After that, they were lyophilized for 24 hours, and then the rhBMP-2 on the surface of titanium was resolved for 72 hours in PBS. All the extracted solution was analyzed by ELISA. One-way analysis of variance (ANOVA) was performed on the data. RESULTS: The wettability is improved by anodic oxidation. The best wettability was shown on the nano-micro group, and it was followed by nano group, micro group, and polished group. In the histological findings, all implants showed good healing and the new bone formation were observed along the implant surface. After 3 days, nano-micro group delivered the most amount of rhBMP-2, followed by nano group, micro group, and polished group. CONCLUSION: It indicated that anodic oxidation on blasting surface produce functionally graded nano-micro porous structure and enhance hydrophilicity of the surface and osseointegration. The findings suggest that the nano-micro porous structure could be a useful carrier of osteogenic molecules like rhBMP-2.

Application of Ultrasonic Nano Crystal Surface Modification into Nitinol Stent Wire to Improve Mechanical Characteristics (나이티놀 스텐트 와이어의 기계적 특성 향상을 위한 초음파 나노표면 개질 처리에 대한 연구)

  • Kim, Sang-Ho;Suh, Tae-Suk;Lee, Chang-Soon;Park, In-Gyu;Cho, In-Sik;Pyoun, Young-Shik;Kim, Seong-Hyeon
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.80-87
    • /
    • 2009
  • Phase transformation, superelastic characteristics and variation of surface residual stress were studied for Nitinol shape memory alloy through application of UNSM technology, and life extension methods of stent were also studied by using elastic resilience and corrosion resistance. Nitinol wire of ${\phi}1.778$ mm showed similar surface roughness before and after UNSM treatment, but drawing traces and micro defects were all removed by UNSM treatment. It also changed the surface residual stress from tensile to compressive values, and XRD result showed less intensive austenite peak and clear martensite and additional R-phase peaks after UNSM treatment. Fatigue resistance could be greatly improved through removal of surface defects and rearrangement of surface residual stress from tensile to compressive state, and development of surface modification system to improve not only bio-compatability but also resistance to corrosion and wear will make it possible to develop vascular stent which can be used for circulating system diseases which run first cause of death of recent Koreans.

  • PDF

Characteristics of Adsorption on the RO Membrane Surface by Coagulants Types (응집제 종류에 따른 RO막 표면 흡착 특성)

  • Jeong, Youngmi;Park, Chanhyuk;Lee, Sanghyup;Kweon, Jihyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.477-483
    • /
    • 2007
  • A coagulation process for RO (reverse osmosis) membrane pretreatment system was an effective technology to remove colloidal and particulate matters. However, coagulant residuals from the pretreatment process may negatively affect RO membrane performance. The bench-scale coagulant exposure study was performed to investigate the effect of their residual on adsorbed mass which related to the membrane performance. Coagulant addition in this study ranged from 0 to 5mg/L ferric chloride, alum, and 2mg/L cationic polymer(poly-di-methyldiallyl ammonium chloride) as coagulant aids. This results showed that adsorbed mass is not significantly increased during short-time period, however, accumulated mass of coagulants on the membrane surface is significantly increased during long-time experimental period. The effect of pH on coagulants adsorption characteristics was significantly differed due to the electrostatic repulsive interactions between soluble coagulants and membrane surface charge. This data suggest that the RO membrane performance of drinking water treatment plant could be decreased by adsorption of residual coagulants when applied for the coagulant pretreatment process.

CLINICAL STUDY OF ENDOSSEOUS HYDROXYAPATITE COATED IMPLANTS (수종의 Hydroxyapatite coated 골유착성 임프란트의 임상적 연구)

  • Han, Chong-Hyun;Kim, Sung-Hyun;Chul, Jong-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.631-639
    • /
    • 2000
  • Root-form endosseous implants which are in use today have a variety of materials, designs and surface characteristics. Among them, pure titanium surface implants and titanium matrix coated with HA are popular as well as are available in many studies. Rate of clinical success is obviously lower in jaw with cancellous bone than dense bone. In order to increase the rate of success in poor bone quality. More advanced techniques of implant surgery and surface treatment of implant fixture body have been developed. As a successful result, the installation of HA coated implant in bone quality type III or IV became highly successful. Since most clinical studies were performed without knowing the characteristics of HA coated implants, it has been impossible to come up with proper clinical data. Therefore the characterization of HA coated implants is essential to understand long term clinical performance and the predictability of HA coated implant system Our results showed that HA coated implants had the success rate at 93.7% in bone quality type III, IV for 3.8 years, and the fixture of Steri-Oss showed more stability with time.

  • PDF

Endocrine Disruptive Potentials in Surface Water Samples from Taihu Lake, Yangtze Delta

  • Shen, L.;Lin, G.F.;Shen, J.H.
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.319-321
    • /
    • 2001
  • Taihu Lake is a major water source for part of Yangtze Delta, which is one of the most urbanized and economically prosperous areas in China. In last couple of decades, some parts of the lake were highly polluted due to eutrophication. This study analyzed dioxin-like potential and mutagenic potential in surface water samples from Taihu Lake. The samples were prepared by XAD-2 resin procedure. A batch of biological assays, including dioxin-like potential microassay with the rat hepatocyte cell line H411E, and Ames test was employed in the research. Results showed that jour water samples have high content of dioxin-like biological potential, the highest activity TEQ to 2,3,7,8-TCDD was 48 pg/ι in sample 1. The mutagenic effect with reading-frame shifting mechanism was confirmed in 3 of 4 samples. The effective sewage treatment facilities and reliable monitoring surveillance system are urgently needed for this area.

  • PDF

Characteristics of IGZO Films Formed by Room Temperature with Thermal Annealing Temperature (상온에서 증착된 IGZO 박막의 열처리 온도에 따른 특성)

  • Lee, Seok-Ryeol;Lee, Kyong-Taik;Kim, Jae-Yeal;Yang, Myoung-Su;Kang, In-Byeong;Lee, Ho-Seong
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.181-185
    • /
    • 2014
  • We investigated the structural, electrical and optical characteristics of IGZO thin films deposited by a room-temperature RF reactive magnetron sputtering. The thin films deposited were annealed for 2 hours at various temperatures of 300, 400, 500 and $600^{\circ}C$ and analyzed by using X-ray diffractometer, transmission electron microscopy, atomic force microscope and Hall effects measurement system. The films annealed at $600^{\circ}C$ were found to be crystallized and their surface roughness was decreased from 0.73 nm to 0.67 nm. According to XPS measurements, concentration of oxygen vacancies were decreased at $600^{\circ}C$. Optical band gap were increased to 3.31eV. The carrier concentration and Hall mobility were sharply increased at 600oC. Our results indicate that the IGZO films deposited at a room temperature can show better thin film properties through a heat treatment.

A 3D bioprinting system and plasma-surface modification to fabricate tissue engineering scaffolds (조직공학용 세포담체 제작을 위한 플라즈마-표면개질이 포함된 바이오프린팅 시스템)

  • Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.3-23
    • /
    • 2017
  • The achievement of tissue engineering can be highly depending on the capability to generate complicated, cell seeded three dimensional (3D) micro/nano-structures. So, various fabrication techniques that can be used to precisely design the architecture and topography of scaffolding materials will signify a key aspect of multi-functional tissue engineering. Previous methods for obtaining scaffolds based on top-down are often not satisfactory to produce complex micro/nano-structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. However, a bioprinting method can be used to design sophisticated 3D tissue scaffolds that can be engineered to mimic the tissue architecture using computer aided approach. Also, in recent, the method has been modified and optimized to fabricate scaffolds using various natural biopolymers (collagen, alginate, and chitosan etc.). Variation of the topological structure and polymer concentration allowed tailoring the physical and biological properties of the scaffolds. In this presentation, the 3D bioprinting supplemented with a newly designed plasma treatment for attaining highly bioactive and functional scaffolds for tissue engineering applications will be introduced. Moreover, various in vivo and in vitro results will show that the fabricated scaffolds can carry out their structural and biological functionality.

  • PDF