• Title/Summary/Keyword: Surface treatment system

Search Result 1,227, Processing Time 0.031 seconds

A Study on the UV Degradation Characteristics of FRP by Plasma Surface Modification (플라즈마 표면개질에 따른 FRP의 자외선 열화 특성에 관한 연구)

  • Hwang, Myung-Hwan;Lim, Kyung-Bum
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.122-126
    • /
    • 2006
  • In this study, composite materials were put to dry interfacial treatment by use of plasma technology It has been presented that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 Torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. The decrease in surface potential of charged samples by corona discharge indicates that the amount of accumulated electrical charges reduces and the charges that have been injected lessen rapidly when the duration of UV irradiation increases. The surface resistivity and the tensile strength of plasma treated samples, a longer UV irradiation time resulted in decreased insulation.

Surface hardening and enhancement of Corrosion Resistance of AISI 310S Austenitic Stainless Steel by Low Temperature Plasma Nitrocarburizing treatment.

  • Lee, Insup
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.175-177
    • /
    • 2012
  • A corrosion resistance and hard nitrocarburized layer was distinctly formed on 310 austenitic stainless steel substrate by DC plasma nitrocarburizing. Basically, 310L austenitic stainless steel has high chromium and nickel content which is applicable for high temperature applications. In this experiment, plasma nitrocarburizing was performed in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-N_2-CH_4$ gas mixtures. After the experiment structural phases, micro-hardness and corrosion resistance were investigated by the optical microscopy, X-ray diffraction, scanning electron microscopy, micro-hardness testing and Potentiodynamic polarization tests. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. XRD indicated a single expanded austenite phase was formed at all treatment temperatures. Such a nitrogen and carbon supersaturated layer is precipitation free and possesses a high hardness and good corrosion resistance.

  • PDF

SHEAR BOND STRENGTH OF HEAT-CURED DENTURE BASE RESIN TO SURFACE TREATED CO-CR ALLOY WITH DIFFERENT METHODS (코발트-크롬 합금의 표면처리에 따른 열중합형 의치상용 레진과의 전단결합강도)

  • Lee, Sang-Hoon;Hwang, Sun-Hong;Moon, Hong-Seok;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.216-227
    • /
    • 2007
  • Statement of problem: For the long-term success of removable partial dentures, the bonding between metal framework and denture base resin is one of the important factors. To improve bonding between those, macro-mechanical retentive form that is included metal framework design has been generally used. However it has been known that sealing at the interface between metal framework and denture base resin is very weak, because this method uses mechanical bonding. Purpose: Many studies has been made to find a simple method which induces chemical bond, now various bonding system is applied to clinic. In this experiment, shear bond strengths of heat-cured denture base resin to the surface-treated Co-Cr alloy were measured before and after thermocycling. Chemically treated groups with Alloy $Primer^{TM}$, Super-Bond $C&B^{TM}$, and tribochemically treated group with $Rocatec^{TM}$ system were compared to the beadtreated control group. The data were analyzed with two-way ANOVA. Result: 1. Shear bond strength of bead-treated group is highest, and Alloy $Primer^{TM}$ treated group, Super-Bond $C&B^{TM}$ treated group, RocatecTM system treated group were followed. Statistically significant differences were found in each treated group(p<0.05). 2. Surface treatment and thermocycling affected shear bond strength(p<0.05), however there was no interaction between two factors(p>0.05). 3. Shear bond strengths of bead-treated group and Alloy $Primer^{TM}$ treated group showed no statistically significant difference before and after thermocycling(p>0.05), and those of Super-Bond $C&B^{TM}$ treated group and $Rocatec^{TM}$ system treated group showed statistically significant difference after thermocycling(p<0.05).

Electrospray and Thermal Treatment Process for Enhancing Surface Roughness of Fecralloy Coating Layer on a Large Sized Substrate (대면적 Fecralloy 코팅층의 표면 거침도 극대화를 위한 정전분무 및 열처리 공정 연구)

  • Lee, Hye Moon;Koo, Hye Young;Yang, Sangsun;Park, Dahee;Jung, Sooho;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.46-52
    • /
    • 2017
  • Fecralloy coating layer with large surface area is suitable for use as a filter media for efficient removal of hot gaseous pollutants exhausted from combustion processes. For uniform preparation of a Fecralloy coating layer with large surface area and strong adhesion to substrate, electrospray coating and thermal treatment processes are experimentally optimized in this study. A nano-colloidal solution with 0.05 wt% Fecralloy nanoparticles is successfully prepared. Optimized electrospraying conditions are experimentally discovered to prepare a uniform coating layer of Fecralloy nano-colloidal solution on a substrate. Drying the electrospray coated Fecralloy nano-colloidal solution layer at $120^{\circ}C$ and subsequent heating at $600^{\circ}C$ are the best post-treatment for enhancing the adhesion force and surface roughness of the Fecralloy coating layer on a substrate. An electrospray coating system, consisting of several multi-groove nozzles, is also experimentally confirmed as a reasonable device for uniform coating of Fecralloy nano-colloid on a large area substrate.

Effects of Indium and Tin on Interfacial Property of Porcelain Fused to Low Gold Alloys (도재소부용 금합금에서 인듐, 주석 첨가가 금속-도재계면 특성에 미치는 영향)

  • Nam, Sang-Yong;Kwak, Dong-Ju;Chung, Suk-Min
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.31-43
    • /
    • 2001
  • This study was performed to observe the micro-structure change of surface, behavior of oxide change of element, the component transformation of the alloy and the bonding strength between the porcelain interface in order to investigate effects of indium, tin on interfacial properties of porcelain fused to low gold alloy. Hardness of castings was measured with a micro-Vicker's hardness tester. The compositional change of the surface of heat-treated specimen was analyzed with an EDS and an EPMA. The interfacial shear bonding strength between alloy specimen and fused porcelain was measured with a mechanical testing system(MTS 858.20). The results were as follows: 1) The hardness value of alloy increased as increasing amount of indium addition. 2) The formation of oxidation increased as increasing indium and tin contents after heat treatment. 3) Diffusion of indium and tin elements increased as increasing indium and tin contents in metal-porcelain surface after porcelain fused to metal firing. 4) The most interfacial shear bonding strength was increased as increasing a composition of adding elements, and a heat-treatment time, and an oxygen partial pressure. From the results of this study it was found that the addition of alloying elements such as indium and tin increase hardness of as-cast alloy, produce surface oxide layer of adding elements by heat-treatment which may improve interfacial bonding strength between alloy and porcelain.

  • PDF

A Study on Output Monitoring of Green Roof Integrated PV System through Surface Temperature Algorithm (표면온도 알고리즘을 통한 옥상녹화통합형 태양광시스템의 출력 모니터링 연구)

  • Kim, Tae-Han;Park, Sang-Yeon
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.89-95
    • /
    • 2015
  • The centralized power supply system and rainwater treatment system, which are major infrastructure in modern cities, are showing their limitations in accommodating environment load due to climate changes that has aggravated recently. As a result, complex issues such as shortage of reserve power and urban flooding have emerged. As a single solution, decentralized systems such as a model integrating photovoltaic system and rooftop greening system are suggested. When these two systems are integrated and applied together, the synergy effect is expected as the rooftop greening has an effect of preventing urban flooding by controlling peak outflow and also reduces ambient temperature and thus the surface temperature of solar cells is lowered and power generation efficiency is improved. This study aims to compare and analyze the monitoring results of four algorithms that define correlations between micro-climate variables around rooftop greening and the surface temperature of solar cells and generate their significance. By doing so, this study seeks to present an effective algorithm that can estimate the surface temperature of solar cell that has direct impact on the efficiency of photovoltaic power generation by observing climate variables.

Optical properties of the $O_2$ plasma treatment on BZO (ZnO:B) thin films for TCO of a-Si solar cells

  • Yoo, Ha-Jin;Son, Chang-Gil;Cho, Won-Tea;Park, Sang-Gi;Choi, Eun-Ha;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.454-454
    • /
    • 2010
  • In order to achieve a high efficient a-Si solar cell, the TCO (transparent conductive oxide) substrates are required to be a low sheet resistivity, a high transparency, and a textured surface with light trapping effect. Recently, a zinc oxide (ZnO) thin film attracts our attention as new coating material having a good transparent and conductive for TCO of solar cells. In this paper the optical properties of $H_2$ post-treated BZO (boron doped ZnO, ZnO:B) thin film are investigated with $O_2$-plasma treatment. The BZO thin films by MOCVD (Metal Organic Chemical Vapor Deposition) are investigated and the samples of $H_2$ post-treated BZO thin film are tested with $O_2$-plasma treatment by plasma treatment system with 13.56 MHz as RIE (Reactive Ion Etching) type. We measured the optical properties and surface morphology of BZO thin film with and without $O_2$-plasma treatment. The optical properties such as transmittance, reflectance and haze are measured with integrating sphere and ellipsometer. This result of the BZO thin film with and without $O_2$-plasma treatment is application to the TCO for solar cells.

  • PDF

A Study on Behavior of Steel Surface Oxidation with Characteristics of the Combustion (연소 특성에 따른 강판 표면 산화거동에 관한 연구)

  • KIM, SEULGI;KANG, KIJOONG;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.392-400
    • /
    • 2017
  • An experimental study was conducted to investigate behavior of steel surface oxidation with characteristics of the combustion. The excess entalphy combustion in porous media system was applied to implement the direct radiation heating system. The surface oxidation thickness (SOT) of fuel-lean was thicker than the SOT of fuel-rich. Also, the SOT was increased by increasing residence time. Detailed explanations were given by SEM and EDS analysis.

A Study on Behavior of Surface Oxidation with Steel Type (강판 종별 표면 산화 거동에 관한 연구)

  • KIM, SEULGI;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.378-385
    • /
    • 2018
  • An experimental study was conducted to investigate behavior of surface oxidation with steel type. The excess entalphy combustion in porous media system was applied to implement the direct radiation heating system. The surface oxidation thickness (SOT) in fuel-lean condition was thicker than the SOT in fuel-rich. Also, the SOT was increased by increasing residence time. Detailed explanations were given by SEM and EDS analysis.

The Effect of Surface Treatment Systems on Chloride Penetration in Cracked Concrete (표면도장공법에 의한 균열부 콘크리트의 염소이온 침투제어 특성)

  • Chae, Gyu-Bong;Yoon, In-Seok;Lee, Chang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.525-528
    • /
    • 2008
  • For well-constructed concrete, its service life is a long term and it has an enough durability performance. However, for cracked concrete, it is clear that cracks should be preferential channel for the penetration of aggressive substance such as chloride ions according to author's previous researches. In order to enhance the lifetime of cracked concrete, critical issues in the performance of the concrete is the risk of chloride-induced corrosion. Even though crack width can be reduced due to the high reinforcement ratio, the question is to which extend these cracks may jeopardize the durability of cracked concrete. If the size of crack is small, surface treatment system can be considered as one of the best options to extend the service life of concrete structures exposed to marine environment simply in terms of cost effectiveness versus durability performance. Thus, it should be decided to undertake an experimental study on the effect of different types of surface treatment system, which are expected to seal the concrete and the cracks to chloride-induced corrosion in particular. In this study, it is examined the effect of surfaced treated systems on chloride penetration through microcracks. Single surface treatments of penetrant or coating and double application were considered as an experimental variation. RCM (Rapid Chloride Migration) testing is accomplished to visualize chloride penetration via cracks.

  • PDF