• Title/Summary/Keyword: Surface treatment system

Search Result 1,227, Processing Time 0.027 seconds

Growth Characteristics of Lettuce and Korean Mint as Affected by Microbubble in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 마이크로버블 처리에 따른 상추와 배초향의 생장 특성)

  • Eun Won Park;Hee Sung Hwang;Hyeon Woo Jeong;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.234-241
    • /
    • 2023
  • This study was conducted to investigate the growth of lettuce (Lactuca sativa L.) and Korean mint (Agastache rugosa Kuntze) with microbubble in a closed-type plant production system (CPPS) with a deep flow technique (DFT). Lettuce and Korean mint were grown in CPPS for 23 days. Microbubble was treated for 5 minutes daily at 9:00, 13:00, and 17:00 for 16 days. The leaf length, leaf width, leaf area, and fresh and dry weights of lettuce and Korean mint were significantly lower in microbubble than in the control. The total root length, root surface area, and the number of root tips of lettuce and Korean mint were significantly lower in the microbubble than in the control. In the case of average root diameter, there was no difference between the treatments of lettuce. However, Korean mint significantly increased in thickness in the microbubble treatment, indicating variations among the different crops. The results of the research indicated that microbubble treatment in the DFT inhibited plant growth by inducing abiotic stress in lettuce and Korean mint.

Hydrologic and Hydraulic Factors Affecting the Long-term Treatment Performance of an Urban Stormwater Tree Box Filter (도시 강우유출수를 처리하는 나무여과상자의 장기 처리효율에 영향을 주는 수리학적 및 수문학적 인자 연구)

  • Geronimo, Franz Kevin F.;Hong, Jungsun;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.715-721
    • /
    • 2017
  • Tree box filters, an example of bioretention systems, were compacted and versatile urban stormwater low impact development technique which allowed volume and water quality treatment performance to be adjusted based on the hydrologic, runoff quality and catchment characteristics. In this study, the overall performance of a 6 year-old tree box filter receiving parking lot stormwater runoff was evaluated. Hydrologic and hydraulic factors affecting the treatment performance of the tree box filter were also identified and investigated. Based on the results, the increase in rainfall depth caused a decrease in hydrologic and hydraulic performance of the tree box filter including volume, average flow, and peak flow reduction (r = -0.53 to -0.59; p<0.01). TSS, organics, nutrients, and total and soluble heavy metals constituents were significantly reduced by the system through media filtration, adsorption, infiltration, and evapotranspiration mechanisms employed in the tree box filter (p<0.001). This significant pollutant reduction by the tree box filter was also found to have been caused by hydrologic and hydraulic factors including volume, average flow, peak flow, hydraulic retention time (HRT) and runoff duration. These findings were especially useful in applying similarly designed tree box filter by considering tree box filter surface area to catchment area of less than 1 %.

Cutting Propagation and Seedling Growth Effect According to Fertilizer Application of Elsholtzia minima Nakai (좀향유의 삽목 증식 및 시비에 따른 유묘의 생장 효과)

  • Kim, Tae-Keun;Kim, Hyoun-Chol;Song, Jin-Young;Lee, Hee-Seon;Ko, Seok-Hyung;Lee, You-mi;Song, Chang-Khil
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.243-252
    • /
    • 2015
  • This study was performed to establish a production system for in situ and ex situ conservation of Elsholtzia minima Nakai, an endemic plant grown in Jeju Island. Moreover, this study aimed to identify root-growth characteristics according to the use of pre-treatment agents and seedling growth effect according to fertilizer application. The mean temperature was similar in greenhouse and vinyl-moist chamber, but air humidity was higher in vinyl-moist chamber than in greenhouse. After stem planting of Elsholtzia minima Nakai, initial root growth was observed after 10 days in greenhouse and after 7 days in vinyl-moist chamber. Root growth rate was more rapid in vinyl-moist chamber. Moreover, survival rate, root growth rate and root number was slightly higher in vinyl-moist chamber than in greenhouse, indicating that vinyl-moist chamber is more effective in plant growth. When pre-treatment agents were used to remove root growth-inhibiting substances, a higher root growth rate of more than 95% was found in pre-treatment groups, excluding the group treated with AgNO3 at 77.5%. Thus, Elsholtzia minima Nakai is thought to have less root growth inhibitors. In the analysis of nitrogen application rate and Osmocote application by seedling container, a difference was found in survival rate and growth according to application rate and container conditions. When Osmocote, a slow release fertilizer, was applied to the soil surface around each culture container, survival rate and the growth of aerial and root parts were most favorable. Thus, Osmocote fertilizer is thought to be desirable for seedling propagation of Elsholtzia minima Nakai.

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes (눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용)

  • Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.712-720
    • /
    • 2022
  • The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.

EFFECT OF ULTRASONIC VIBRATION ON ENAMEL AND DENTIN BOND STRENGTH AND RESIN INFILTRATION IN ALL-IN-ONE ADHESIVE SYSTEMS (All-in-one 접착제에서 초음파진동이 법랑질과 상아질의 결합강도와 레진침투에 미치는 영향)

  • Lee, Bum-Eui;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.1
    • /
    • pp.66-78
    • /
    • 2004
  • The objective of this study was to apply the vibration technique to reduce the viscosity of bonding adhesives and thereby compare the bond strength and resin penetration in enamel and dentin achieved with those gained using the conventional technique and vibration technique. For enamel specimens, thirty teeth were sectioned mesio-distally. Sectioned two parts were assigned to same adhesive system but different treatment(vibration vs. non-vibration). Each specimen was embedded in 1-inch inner diameter PVC pipe with a acrylic resin. The buccal and lingual surfaces were placed so that the tooth and the embedding medium were at the same level. The samples were subsequently polished silicon carbide abrasive papers. Each adhesive system was applied according to its manufacture's instruction. Vibration groups were additionally vibrated for 15 seconds before curing. For dentin specimen, except removing the coronal part and placing occlusal surface at the mold level, the remaining procedures were same as enamel specimen. Resin composite(Z250. 3M. U.S.A.) was condensed on to the prepared surface in two increments using a mold kit(Ultradent Inc., U.S.A.). Each increments was light cured for 40 seconds. After 24 hours in tap water at room temperature, the specimens were thermocycled for 1000cycles. Shear bond strengths were measured with a universal testing machine(Instron 4465, England). To investigate infiltration patterns of adhesive materials, the surface of specimens was examined with scanning electron microscope. The results were as follows: 1. In enamel the mean values of shear bond strengths in vibration groups(group 2, 4, 6) were greater than those of non-vibration group(group 1, 3, 5). The differences were statistically significant except AQ bond group. 2. In dentin, the mean values of shear bond strengths in vibration groups(group 2, 4, 6) were greater than those of non-vibration groups(group 1, 3, 5). But the differences were not statistically significant except One-Up Bond F group. 3. The vibration group showed more mineral loss in enamel and longer resin tag and greater number of lateral branches in dentin under SEM examination.

  • PDF

Optimizing In Vitro Propagation of Sophora koreensis Nakai using Statistical Analysis (다양한 통계분석 기법을 이용한 개느삼(Sophora koreensis Nakai)의 기내 증식 최적 조건 구명)

  • Jeong, Ukhan;Lee, Hwa;Park, Sanghee;Cheong, Eun Ju
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.53-63
    • /
    • 2021
  • Sophora koreensis Nakai is an indigenous plant in Koreawith a restricted natural range, part of which is in Gangwon province. The species is known to contain phytochemicals that have beneficial effects on human health, and it is economically important in bioindustry. Because of the limited number of plants in a small range of habitats, the mass-propagation method should be developed for use and conservation. In vitro tissue culture is a reliable method in terms of mass propagation from selected clones of the species. We investigated the optimal conditions of the medium in this process, especially focusing on the concentrations of plant growth regulators(PGRs) in the culture of stem-containing axillary buds. Three statistical methods, i.e., ANOVA, response surface method(RSM), and fuzzy clustering were used to analyze the plant growth, number of shoots induced, and shoot length with various combinations of PGRs. Results from the RSM differed from those of the other two methods; thus, the method was not suitable. ANOVA and fuzzy clustering showed similar results. However, more accurate results were obtained using fuzzy clustering because it provided a probability for each treatment. On the basis of the fuzzy clustering analysis, stem tissue produced the greatest number of shoots(11.03 per explant; 63.33%) on a medium supplemented with 5-��M 6-benzylaminopurine and 2.5-��M thidiazuron(TDZ). Proliferation of shoots(2.18 ± 0.21 cm, 63.33%) was attained on a medium supplemented with 2.5-��M BA, 2.5-��M TDZ, and 2.5-��M gibberellic acid.

EFFECT OF ANCHORAGE SYSTEMS ON LOAD TRANSFER WITH MANDIBULAR IMPLANT OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS (하악 임플란트 overdenture에서 anchorage system이 하중전달에 미치는 영향)

  • Kim Jin-Yeol;Jeon Young-Chan;Jeong Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.507-524
    • /
    • 2002
  • Load transfer of implant overdenture varies depending on anchorage systems that are the design of the superstructure and substructure and the choice of attachment. Overload by using improper anchorage system not only will cause fracture of the framework or screw but also may cause failure of osseointegration. Choosing anchorage system in making prosthesis, therefore, can be considered to be one of the most important factors that affect long-term success of implant treatment. In this study, in order to determine the effect of anchorage systems on load transfer in mandibular implant overdenture in which 4 implants were placed in the interforaminal region, patterns of stress distribution in implant supporting bone in case of unilateral vertical loading on mandibular left first molar were compared each other according to various types of anchorage system using three-dimensional photoelastic stress analysis. The five photoelastic overdenture models utilizing Hader bar without cantilever using clips(type 1), cantilevered Hader bar using clips(type 2), cantilevered Hader bar with milled surface using clips(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4), and Hader bar using clip and ERA attachments(type 5), and one cantilevered fixed-detachable prosthesis(type 6) model as control were fabricated. The following conclusions were drawn within the limitations of this study, 1. In all experimental models. the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. Maximum fringe orders on ipsilateral distal implant supporting bone in a ascending order is as follows: type 5, type 1, type 4, type 2 and type 3, and type 6. 3. Regardless of anchorage systems. more or less stresses were generated on the residual ridge under distal extension base of all overdenture models. To summarize the above mentioned results, in case of the patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant and unfavorable antero-posterior spread. selecting resilient type attachment or minimizing distal cantilever bar is considered to be appropriate methods to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.

Water Quality Improvement Using a Contact Oxidation Canal with Sedimentation Basin (침전접촉산화수로를 이용한 수질 개선)

  • Kim, Won-Jang;Park, Sang-Hyun;Kim, Hyung-Joong;Kim, Tae-Kyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.143-149
    • /
    • 2001
  • A contact oxidation canal system with sedimentation basin was installed to study the efficiency of water quality purification. The primary sedimentation basin with 60 min of HRT (Hydraulic Retention Time) included in the system was aimed to sediment pollutants in the water and the deposit being released by the drainage culvert located at the bottom of the system. The oxidation canal aerated by nozzle was to contact the pollutants and oxygen in the surface of plastic filter to purify the water. Discharge, HRT, length of the oxidation canal were $200\;m^3/day$, 90 min, 20 m, respectively. The treatment efficiency of total nitrogen was lower compared with other water quality items such as SS, BOD, TP because the anoxic condition for denitrification was not ensured after the oxidation canal. However, $25%{\sim}89.6%$ of SS, $75.0%{\sim}91.5%$ of BOD, $44.3%{\sim}95.3%$ of TP were removed in this system. Overall, the results indicates that this system appears to have a potential capability for water quality improvement of the reservoirs or the canals in the agricultural watershed.

  • PDF

Analysis of Local Resident'S Perception on 'Rainwater for Drinking' Project in Developing Countries : Focusing on Vietnam Case Studies (개발도상국의 빗물식수화시설 사업에 대한 지역주민의 인식 분석 : 베트남 사례를 중심으로)

  • Lee, Minju;Han, Mooyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Drinking water deficiency is prevalent in developing countries due to contamination of surface and ground water, difficulties of water treatment, and lack of water infrastructures. 'Rainwater For Drinking (RFD)' projects are emerging as one of the effective solutions globally since RFD systems provide safe drinking water from rainwater. In RFD projects, perception of local residents toward RFD project is essential as local residents must manage their RFD systems on their own after the project finishes. This research performed survey and interview to 209 local residents, who use RFD systems, and analyzed their general perception, expected effects and feared factors toward RFD projects. Through the research, it was shown that the most of the local residents have positive perception towards RFD projects' effectiveness (41.9%) and are willing to participate (58.9%). The top three expected effect factors of the RFD projects were 'supply of safe water source', 'vitalization of local community', and 'expansion of RFD system'. The top three feared factors were 'quality of rainwater', 'technical factors of RFD system', and 'maintenance of RFD system'. The research findings indicate that development of simple water quality measuring device and education of the local residents about RFD system is necessary for better maintenance of the RFD system after the project finishes.

Patient Setup Aid with Wireless CCTV System in Radiation Therapy (무선 CCTV 시스템을 이용한 환자 고정 보조기술의 개발)

  • Park, Yang-Kyun;Ha, Sung-Whan;Ye, Sung-Joon;Cho, Woong;Park, Jong-Min;Park, Suk-Won;Huh, Soon-Nyung
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.300-308
    • /
    • 2006
  • $\underline{Purpose}$: To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. $\underline{Materials\;and\;Methods}$: In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal (${\sim}2.4\;GHz$ and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images to investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. $\underline{Results}$: More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of $1.5{\pm}0.7\;mm$ with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of ${\sim}0.17\;sec$. $\underline{Conclusion}$: The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful.