DOI QR코드

DOI QR Code

Growth Characteristics of Lettuce and Korean Mint as Affected by Microbubble in a Closed-type Plant Production System

밀폐형 식물생산시스템에서 마이크로버블 처리에 따른 상추와 배초향의 생장 특성

  • Eun Won Park (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Hee Sung Hwang (Division of Crop Science, Graduate School of Gyeongsang National University) ;
  • Hyeon Woo Jeong (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Seung Jae Hwang (Division of Horticultural Science, College of Agriculture & Life Sciences, Gyeongsang National University)
  • 박은원 (경상국립대학교 응용생명과학부) ;
  • 황희성 (경상국립대학교 작물생산과학부) ;
  • 정현우 (경상국립대학교 응용생명과학부) ;
  • 황승재 (경상국립대학교 농업생명과학대학 원예과학부)
  • Received : 2023.04.05
  • Accepted : 2023.07.25
  • Published : 2023.07.31

Abstract

This study was conducted to investigate the growth of lettuce (Lactuca sativa L.) and Korean mint (Agastache rugosa Kuntze) with microbubble in a closed-type plant production system (CPPS) with a deep flow technique (DFT). Lettuce and Korean mint were grown in CPPS for 23 days. Microbubble was treated for 5 minutes daily at 9:00, 13:00, and 17:00 for 16 days. The leaf length, leaf width, leaf area, and fresh and dry weights of lettuce and Korean mint were significantly lower in microbubble than in the control. The total root length, root surface area, and the number of root tips of lettuce and Korean mint were significantly lower in the microbubble than in the control. In the case of average root diameter, there was no difference between the treatments of lettuce. However, Korean mint significantly increased in thickness in the microbubble treatment, indicating variations among the different crops. The results of the research indicated that microbubble treatment in the DFT inhibited plant growth by inducing abiotic stress in lettuce and Korean mint.

본 연구는 DFT 재배 시스템을 이용한 밀폐형 식물생산시스템에 MB처리 유무에 따른 상추(Lactuca sativa L.)와 배초향(Agastache rugosa Kuntze)의 생육과 양액 특성을 조사하기 위해 수행되었다. 상추와 배초향은 밀폐형 식물생산시스템에서 23일간 재배되었다. MB는 매일 9시, 13시, 17시에 5분씩 16일간 처리하였다. 상추와 배초향의 엽장, 엽폭, 엽면적, 생체중 및 건물중은 MB처리구에서 대조구에 비해 유의하게 낮았다. 상추와 배초향의 총 뿌리길이, 뿌리 표면적, 근단 수도 MB처리구에서 유의적으로 낮게 나타났다. 평균 뿌리 직경의 경우, 상추는 처리 간에 차이가 없었으나, 배초향은 MB처리구에서 유의적으로 굵어 종 간에 차이가 있음을 확인하였다. 본 연구 결과, DFT 방식으로 상추와 배초향을 재배할 때 MB 처리는 비생물적 스트레스를 유발하여 생육을 억제하는 것으로 나타났다.

Keywords

References

  1. Akhiyarova G., D. Veselov, R. Ivanov, G. Sharipova, I. Ivanov, I.C. Dodd, and G. Kudoyarova 2023, Root ABA accumulation delays lateral root emergence in osmotically stressed barley plants by decreasing root primordial IAA accumulation. Int J Plant Biol 14:77-90. doi:10.3390/ijpb14010007 
  2. Bok G., J. Choi, H. Lee, K. Lee, and J. Park 2019, Microbubbles increase glucosinolate contents of watercress (Nasturtium officinale R. Br.) grown in hydroponic cultivation. Protected Hort Plant Fac 28:158-165. (in Korean) doi:10.12791/KSBEC.2019.28.2.158 
  3. Byeon J.Y., S.J. Yoon, I.J. Lee, and D.S. Kim 2017, Crop physiology. Hyangmunsa Press, Seoul, Korea. pp 38-104. (in Korean)
  4. Chalker-Scott L. 1999, Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1-9. doi:10.1111/j.1751-1097.1999.tb01944.x 
  5. Choi K.Y., and Y.B. Lee 2003, Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory. J Korean Soc Hortic Sci 44:805-808. 
  6. Choi K.Y., E.Y. Yang, D.K. Park, Y.C. Kim, T.C. Seo, H.K. Yun, and H.D. Seo 2005, Development of nutrient solution for hydroponics of Cruciferae leaf vegetables based on nutrient-water absorption rate and the cation ratio. J Bio-Env Con 14:289-297. (in 
  7. Hoagland D.R., and D.I. Arnon 1950, The water-culture method for growing plants without soil. College of Agriculture, University of California, Berkeley, CA, USA. 
  8. Hong M.J., J.H. Kim, H.Y. Kim, M.J. Kim, and S.M. Kim 2020, Chemical composition and biological activity of essential oil of Agastache rugosa (Fisch. & C. A. Mey.) O. Kuntze. Korean J Med Crop Sci 28:95-110. (in Korean) doi:10.7783/KJMCS.2020.28.2.95 
  9. Ikeura H., H. Takahashi, F. Kobayashi, M. Sato, and M. Tamaki 2017, Effect of different microbubble generation methods on growth of Japanese mustard spinach. J Plant Nutr 40:115-127. doi:10.1080/01904167.2016.1201498 
  10. Ikeura H., H. Takahashi., F. Kobayashi, M. Sato, and M. Tamaki 2018, Effects of microbubble generation methods and dissolved oxygen concentrations on growth of Japanese mustard spinach in hydroponic culture. Hortic Sci Biotechnol 93:483-490. doi:10.1080/14620316.2017.1391718 
  11. Jung G.B., W.I. Kim, J.S. Lee, and S.G. Yun 2002, Effects of liming on uptake to crops of heavy metals in soils amended with industrial sewage sludge. Korean J Environ Agric 21:38-44. (in  https://doi.org/10.5338/KJEA.2002.21.1.038
  12. Kim S.E., J.E. Lee, S.Y. Sim, and Y.S. Kim 2014, Nutrient absorption pattern by analysis of drainage through growth stages in cucumber coir bag culture. Protected Hort Plant Fac 23:229-234. (in Korean) doi:10.12791/KSBEC.2014.23.3.229 
  13. Lee J.G., S.S. Oh, S.H. Cha, Y.A. Jang, S.Y. Kim, Y.C. Um, and S.R. Cheong 2010, Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J Bio-Env Con 19:351-359. (in 
  14. Lu J., O.G. Jones, W. Yan, and C.M. Corvalan 2023, Microbubbles in food technology. Annu Rev Food Sci Technol 14:495-515. doi:10.1146/annurev-food-052720-113207 
  15. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2021, Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2020. MAFRA, Sejong, Korea. (in Korean)
  16. Morimoto T., T. Masuda, and H. Nonami 1989, Oxygen enrichment in deep hydroponic culture improves growth of spinach. Environ Control Biol 27:97-102. doi:10.2525/ecb1963.27.97 
  17. Naing A.H., and C.K. Kim 2021, Abiotic stress-induced anthocyanins in plants: their role in tolerance to abiotic stresses. Physiol Plant 172:1711-1723. doi:10.1111/ppl.13373 
  18. Ohnari H., Y. Tsunami, H. Ohnari, and T. Yamamoto 2006, Generating mechanism and shrinking characteristic of micro bubbles. Proc Hydraul Eng 50:1345-1350. (in Japanese)  https://doi.org/10.2208/prohe.50.1345
  19. Park G.W., and Y.S. Kim 2017, Theory and reality of hydroponic cultivation. World Science, Seoul, Korea, pp 27-28. (in Korean)
  20. Park H.J., S.H. Kwon, M.S. Lee, G.T. Kim, M.Y. Choi, and W.T. Jung 2000, Antimicrobial activity of the essential oil of the herbs of Agastache rugosa and its composition. J Korean Soc Food Sci Nutr 29:1123-1126. (in 
  21. Park J.S., and K. Kurata 2009, Application of microbubbles to hydroponics solution promotes lettuce growth. HortTechnology 19:212-215. doi:10.21273/HORTSCI.19.1.212 
  22. Pervaiz Z.H., J. Iqbal, Q. Zhang, D. Chen, H. Wei, and M. Saleem 2020, Continuous cropping alters multiple biotic and abiotic indicators of soil health. Soil Syst 4:59. doi:10.3390/soilsystems4040059 
  23. Poei-Langston M.S., and R.E. Wrolstad 1981, Color degradation in an ascorbic acid-anthocyanin-flavanol model system. J Food Sci 46:1218-1236. doi:10.1111/j.1365-2621.1981.tb03026.x 
  24. Rural Development Administration (RDA) 2018, The new resource plant. RDA, Jeonju, Korea, pp 85-86. (in Korean)
  25. Rural Development Administration (RDA) 2021, Hydroponics. RDA, Jeonju, Korea, pp 14-17. (in Korean) 
  26. Takahashi M. 2005, ζ Potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. J Phys Chem B 109:21858-21864. doi:10.1021/jp0445270 
  27. Takahashi M. 2009, Base and technological application of microbubble and nanobubble. Materials 22:2-19. (in Japanese) 
  28. Takahashi M., K. Chiba, and P. Li 2007, Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. J Phys Chem B 111:11443-11446. doi:10.1021/jp074727m 
  29. Turrens J.F. 2003, Mitochondrial formation of reactive oxygen species. J Physiol 552:335-344. doi:10.1111/j.1469-7793.2003.00335.x 
  30. Uoon C.I., M.K. Cha, Y.A. Jeon, and Y.Y. Cho 2017, Optimal cultivar selection of kohlrabi for hydroponics culture in a closed-type plant factory system. Protected Hort Plant Fac 26:297-300. (in Korean) doi:10.12791/KSBEC.2017.26.4.297 
  31. Valko M., D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, and J. Telser 2007, Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44-84. doi:10.1016/j.biocel.2006.07.001 
  32. Wrolstad R.E. 2004, Anthocyanin pigments-bioactivity and coloring properties. J Food Sci 69:C419-C425. doi:10.1111/j.1365-2621.2004.tb10709.x 
  33. Xiang Z.X., W. Li, Y.T. Lu, and T.T. Yuan 2023, Hydrogen sulfide alleviates osmotic stress-induced root growth inhibition by promoting auxin homeostasis. Plant J 114:1369-1384. doi: 10.1111/tpj.16198 
  34. Zhang X.H., A. Khan, and W.A. Ducker 2007, A nanoscale gas state. Phys Rev Lett 98:136101. doi:10.1103/PhysRevLett.98.136101