• Title/Summary/Keyword: Surface preparation

Search Result 1,908, Processing Time 0.036 seconds

Performance Evaluation of Prepackaged-Type Low Shrinkage Surface Preparation Materials Using a VA/E/MMA Terpolymer Powder

  • Hong, Sun-Hee;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.64-72
    • /
    • 2012
  • Recently, prepackaged-type surface preparation materials using redispersible polymer powders are widely used for interior and exterior finishing in the construction work. The purpose of this study is to evaluate the performance and the quality of prepackaged-type surface preparation materials using a VA/E/MMA terpolymer powder. Surface preparation materials using a VA/E/MMA terpolymer powder were prepared with shrinkage reducing agent contents of 0, 4 % and cellulose fiber contents of 0, 0.5, 1.0 %, and tested for drying shrinkage, strengths, adhesion in tension, crack and impact resistance, water absorption, permeability. As a result, prepackaged-type surface preparation materials show outstanding performance depending on the shrinkage reducing agent and cellulose fiber contents.

Properties of Polymer-Modified Surface Preparation Mortars with Mineral Admixtures for Sewage Treatment Structures (하수처리구조물용 광물질 혼화재 병용 폴리머 혼입 바탕조정재의 특성)

  • Park, Seung-Min;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.30-31
    • /
    • 2017
  • The objective of this study is to evaluate the performance of polymer-modified surface preparation mortars with pozzolanic materials for corrosion prevention method in deteriorated sewage treatment structures. The prepackaged-type surface preparation mortars are prepared with a polymer-binder ratio of 10%, ground granulated blast furnace slag contents of 0, 15, 30%, a fly ash content of 15%. And, the specimens are tested for workability, adhesion in tension, water absorption, crack and impact resistance. As a result, the prepackage-type surface preparation mortars for sewage treatment structure are satisfied with quality requirements by KS F 4716, Japan sewage work agency(JS) and JIS A 6916 for surface preparation mortars.

  • PDF

Surface Preparation and Activation Only by Abrasion and Its Effect on Adhesion Strength

  • Ali Gursel;Salih Yildiz
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.101-107
    • /
    • 2022
  • Adhesive joints have many advantages such as weight savings, corrosion and fatigue resistance and now developed even withstand of high impact and dynamic loads. However, an adhesion has cumbersome and complicated surface preparation processes. The surface preparation step is critical in adhesive joint manufacturing in order to obtain the prescribed strength for adhesive joints. In this study, it was attempted to simplify and reduce the number of surface preparation steps, and abrasion and rapid adhesive application (ARAA) process is developed for an alternative solution. The abrasion processes are performed only for creating surface roughness in standard procedures (SP), although the abrasion processes cause surface activation itself. The results showed that there is no need the long procedures in laboratory or chemical agents for adhesion. After the abrasion process, the attracted and highly reactive fresh surface layer obtained, and its effect on bonding success is observed and analyzed in this research, in light of the essential physic and adhesion theories. Al 6061 aluminum adherends and epoxy-based adhesives were chosen for bonding processes, which is mostly used in light vehicle parts. The adherends were cleaned, treated and activated only with abrasion, and after the adhesive application the specimens were tested under quasi-static loading. The satisfied ARAA results were compared with that of the specimens fabricated by the standard procedure (SP) of adhesion processes of high impact loads.

Evaluation on the Properties of Fire Retardant Surface Preparation Mortars (화재 지연형 바탕조정재의 기초물성 평가에 관한 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kim, Deuck-Mo;Song, Sung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.559-567
    • /
    • 2018
  • In the case of fire, surface treatment agents used in external insulation finishing methods are substances that are vulnerable to fire due to thin finishes and the combustion of polymers. In this study, it was expected that the performance of surface preparation mortars could be improved by using expandable graphite with excellent thermal performance. Experimental results showed that the mechanical properties of surface preparation mortar were improved by using the fly ash and silica fume. Surface treatment materials using expanded graphite have a characteristic of expanding when a fire occurs. It has been shown that heat-swellable surface treatment materials can reduce the penetration of heat sources into the surface of synthetic insulation.

PREPARATION OF ANISOTROPIC CONDUCTIVE FINE PARTICLES BY ELECTROLESS NICKEL PLATING.

  • Fujinami, T.;Watanabe, J.;Motizuki, I.;Honma, H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.709-713
    • /
    • 1996
  • Mechanical solderless chip packaging with small gold bumps or metal balls has increased in the electronic devices. The preparation of conductive particles (5~7 $\mu\textrm{m}$ diamiter) by electroless nickel plating have been investigated. Generally, batch type electroless plating is applied to provide conductivity on the nonconductors. Since the surface areas of particles are much larger than the bulk substrate, accordingly the electroless plating bath becomes unstable. Thus, we applied the continuous dropping method for the preparation of conductive particles. The uniform coverage of deposited nickel on the particles was obtained by using ammonium acetate as a complexing agent, and surface coverage is further improved without coagulation of particles by the surface active agent treatment before enter the plating bath.

  • PDF

Effects of Specimen Preparation Method and Contact Resistance on the Formation of Anodizing Films on Aluminum Alloys (시편의 준비 방법 및 접촉저항이 알루미늄 합금의 아노다이징 피막 형성에 미치는 영향)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • In this study, five different specimen preparation methods were introduced and their advantages and disadvantages were presented. One of them, an epoxy mounting method has advantages of constant exposure area, ease of surface preparation without touching the specimen surface during polishing or cleaning, use of small amount of material and ease of specimen reuse by polishing or etching. However, in order to eliminate unexpected errors resulting from preferable reaction at the specimen/epoxy interface and contact resistance between the specimen and copper conducting line for electrical connection, it is recommended to cover the wall side of the specimen with porous anodic oxide films and to remain the contact resistance lower than 1 ohm. The increased contact resistance between the specimen and Cu conducting line appeared to result in increases of anodizing voltage and solution temperature during anodizing by which thickness and hardness of anodizing film on Al2024 alloy were drastically decreased and color of the films became more brightened.

Influence of the amount of tooth surface preparation on the shear bond strength of zirconia cantilever single-retainer resin-bonded fixed partial denture

  • Sillam, Charles-Ellie;Cetik, Sibel;Ha, Thai Hoang;Atash, Ramin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.286-290
    • /
    • 2018
  • PURPOSE. Conventional resin-bonded fixed partial dentures (RBFPDs) are usually made with a two-retainer design. Unlike conventional RBFPDs, cantilever resin-bonded fixed partial dentures (Cantilever RBFPDs) are, for their part, made with a single-retainer design. The aim of this study was to compare the effect of tooth surface preparation on the bond strength of zirconia cantilever single-retainer RBFPDs. The objective is to evaluate the shear bond strength of these single-retainer RBFPDs bonded on 3 different amount of tooth surface preparation. MATERIALS AND METHODS. Thirty extracted bovine incisors were categorized to 3 groups (n=10), with different amounts of tooth surface preparations. Teeth were restored with single-retainer RBFPDs with different retainer surfaces: large retainer of $32mm^2$; medium retainer of $22mm^2$; no retainer and only a proximal connecting box of $12mm^2$. All RBFPDs were made of zirconia and were bonded using an adhesive system without adhesive capacity. Shear forces were applied to these restorations until debonding. RESULTS. Mean shear bond strength values for the groups I, II, and II were $2.39{\pm}0.53MPa$, $3.13{\pm}0.69MPa$, and $5.40{\pm}0.96MPa$, respectively. Statistical analyses were performed using a one-way ANOVA test with Bonferroni post-hoc test, at a significance level of 0.001. Failure modes were observed and showed a 100% adhesive fracture. CONCLUSION. It can be concluded that the preparation of large tooth surface preparation might be irrelevant. For zirconia single-retainer RBFPD, only the preparation of a proximal connecting box seems to be a reliable and minimally invasive approach. The differences are statistically significant.

Surface Preparation of III-V Semiconductors

  • Im, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.1-86.1
    • /
    • 2015
  • As the feature size of Si-based semiconductor shrinks to nanometer scale, we are facing to the problems such as short channel effect and leakage current. One of the solutions to cope with those issues is to bring III-V compound semiconductors to the semiconductor structures, because III-V compound semiconductors have much higher carrier mobility than Si. However, introduction of III-V semiconductors to the current Si-based manufacturing process requires great challenge in the development of process integration, since they exhibit totally different physical and chemical properties from Si. For example, epitaxial growth, surface preparation and wet etching of III-V semiconductors have to be optimized for production. In addition, oxidation mechanisms of III-V semiconductors should be elucidated and re-growth of native oxide should be controlled. In this study, surface preparation methods of various III-V compound semiconductors such as GaAs, InAs, and GaSb are introduced in terms of i) how their surfaces are modified after different chemical treatments, ii) how they will be re-oxidized after chemical treatments, and iii) is there any effect of surface orientation on the surface preparation and re-growth of oxide. Surface termination and behaviors on those semiconductors were observed by MIR-FTIR, XPS, ellipsometer, and contact angle measurements. In addition, photoresist stripping process on III-V semiconductor is also studied, because there is a chance that a conventional photoresist stripping process can attack III-V semiconductor surfaces. Based on the Hansen theory various organic solvents such as 1-methyl-2-pyrrolydone, dimethyl sulfoxide, benzyl alcohol, and propylene carbonate, were selected to remove photoresists with and without ion implantation. Although SPM and DIO3 caused etching and/or surface roughening of III-V semiconductor surface, organic solvents could remove I-line photoresist without attack of III-V semiconductor surface. The behavior of photoresist removal depends on the solvent temperature and ion implantation dose.

  • PDF

Recent Development of Protein Microarray and Proteogen Platform

  • Han, Moon-Hi;Kang, In-Cheol;Lee, Yoon-Suk;Cho, Yong-Wan;Lee, Eun-Kyoung
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.47-47
    • /
    • 2005
  • There are many different surface technologies currently applied for preparation of protein chips. However, it requires innovative surface chemistry for capture proteins to be immobilized on chip surface keeping their conformation and activity intact and their orientation right, while they bind tightly and densely in a given array spot. Proteogen has developed 'ProteoChip BP' coated with novel proprietary linker molecules $(ProLinker^{TM})$ for efficient and robust immobilizations of capture proteins by improving surface properties of molecular captures. It was demonstrated that $ProLinker^{TM}$ gave the best surface performance in preparation of protein microarray chip base plates among others currently available on the market. In particular, the $ProLinker^{TM}-based$ surface chemistry has demonstrated to provide excellent performance in preparation of 'Antibody Chip' for analysis of biomarkers as well as proteome expression profiles. The linker molecule has also shown to be well applicable for development of biosensors and micro-beads as well as protein microarray and nano-array. ProteoChip BP can be used either for preparation of high-density array by using a microarrayer or for preparation of 'Well-on-a-Chip' with low density array, which is better applicable for quantitative analysis of biomarkers or protein-protein interactions. The biomarker assay can be performed either by direct or sandwich methods of fluorescence immunoassay. Application of ProteoChip BP has been well demonstrated by the extensive studies of 1) tumor-marker assays, 2) new drug screening by using 'Integrin Chip' and 3) protein expression profile analysis. Some of experimental results will be presented.

  • PDF

Surface Modification Studies by Atomic Force Microscopy for Ar-Plasma Treated Polyethylene

  • Seo, Eun-Deock
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.291-295
    • /
    • 2002
  • Atomic force microscopy(AFM) was used to study the polyethylene(PE) surfaces grafted and immobilized with acrylic acid by Ar plasma treatment. The topographical images and parameters including RMS roughness and Rp-v value provided an appropriate means to characterize the surfaces. The plasma grafting and immobilization method were a useful tool for the preparation of surfaces with carboxyl group. However, the plasma immobilization method turned out to have a limitation to use as a means of preparation of PE surface with specific functionalities, due to ablation effect during the Ar plasma treatment process.