• Title/Summary/Keyword: Surface polishing

Search Result 891, Processing Time 0.026 seconds

Surface Smoothing of Blasted Glass Micro-Channels Using Abrasive Waterjet (워터젯을 이용한 블라스팅 유리 마이크로 채널의 표면거칠기 개선)

  • Son, Sung-Gyun;Han, Sol-Yi;Sung, In-Ha;Kim, Wook-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1159-1165
    • /
    • 2013
  • Powder blasting, which is an efficient micromachining method for glass, silicon, and ceramics, has a critical disadvantage in that the surface finish is poor owing to the brittle fracture of materials. Low-pressure waterjet machining can be applied to smoothen the rough surface inside the blasted structure. In this study, the surface roughness and sectional dimension of micro-channels are observed during the repetitive application of a waterjet to blasted micro-channels. The asperities and subsurface cracks created by blasting are removed by waterjet machining. Along with the surface roughness, it is found that the sectional dimension increases and the edges of the finished micro-channel become slightly round. Finally, a microfluidic chip is machined by the blasting-waterjet process and a transparent microfluidic channel is obtained efficiently.

Performance of Air Electrodes with a Surface-Polished Yttria-Stabilized Zircona Electrolyte for Thin-Film Solid Oxide Fuel Cells (박막 고체산화물 연료전지용 이트리아 안정화 지르코니아 전해질 연마표면상의 공기극 성능)

  • Lee, Yu-Gi
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.283-289
    • /
    • 2001
  • Composite cathodes of 50/50 vol% LSM- YSZ (La$_{1-x}$Sr$_{x}$MnO$_3$-yttria stabilized zirconia) were deposited onto surface- Polished YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and studied by ac impedance spectroscopy (IS). The typical impedance spectra measured for an air/LSM- YSZ/YSZ/Pt/air cell at $700^{\circ}C$ were composed of two depressed arcs. Addition of YSZ to the LSM electrode significantly enlarged the triple-phase boundaries (TPB) length inside the electrode, which led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities and to enlarge the TPB length can further reduce cathode resistivity. The cathodic resistivity of the LSM- YSZ electrodes was a strong function of operation temperature, composition and particle size of cathode materials, applied current, and electrolyte surface roughness.

  • PDF

Observation of surface roughness on three types of resin based on grinding time of dental automatic barrel finishing (치과용 자동바렐연마기의 연마시간에 따른 3종 레진의 표면거칠기 관찰)

  • Jung, An-Na;Ko, Hyeon-Jeong;Park, Yu-Jin
    • Journal of Technologic Dentistry
    • /
    • v.43 no.2
    • /
    • pp.56-61
    • /
    • 2021
  • Purpose: This study aimed to produce resin prosthetics using a dental automatic barrel finishing. Surface roughness and surface topography of resins were observed according to the grinding time of the dental automatic barrel finishing. Methods: This study was performed with thermopolymer, autopolymer, and photopolymer resins. The dimensions of the specimen were 10×10×2 mm. Each specimen was polymerized according to the manufacturer's instructions. The polymerized resin was honed for 30 minutes at 5-min intervals in a dental automatic barrel finishing. The specimen was observed using a three-dimensional (3D) optical microscope, and the surface roughness was measured. Results: After the polishing with the dental automatic barrel finishing, the heat-cured (HC) specimen showed the highest and lowest values of Ra after 10 and 15 minutes, respectively. The self-cured (SC) specimen showed the highest and lowest values of Ra after 10 and 25 minutes, respectively. Finally, the 3D specimen showed the highest and lowest values of Ra after 5 and 20 minutes, respectively. Conclusion: After measuring the surface roughness of the three types of resins according to the grinding time of the dental automatic barrel finishing, the lowest Ra values for the HC, SC, and 3D specimens were measured after 15, 25, and 20 minutes, respectively. Therefore, we concluded that a limit on the grinding time of the resin using a dental automatic barrel finishing is needed.

FITNESS TEST USING THE PHASE-SHIFTING PROFILOMETRY ACCORDING TO THE DENTURE CURING METHODS (위상이동 형상측정법을 이용한 의치 중합 방법에 따른 적합도 검사)

  • Lee, Cheong-Hee;Jo, Kwang-Hun;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.474-493
    • /
    • 1999
  • According to repeated measurements and correction procedures, the accuracy of the phase-shifting profilometry was developed. At first, after 20 final models for maxillary complete denture were duplicated , the mucosa sur-faces of models were measured with the phase-shifting proflometry and each mirror view of these was calibrated. Maxillary casts were divided into 4 groups of 5 casts per each, and wax dentures with 2 sheets of baseplate wax and artificial teeth were made and then cured according to the curing method of each group. Group I ; quick curing with QC-20 acrylic resin Group II ; 9 hour curing with QC-20 acrylic resin Group III ; SR-Ivocap system Group IV ; metal base and quick curing with QC-20 acrylic resin. After curing, polishing, and storing at $37^{\circ}C$ in saline for 30 days, the forms of the impression surface of the dentures were measured with the phase-shifting profilometry. Then, the impression surface form of each denture was placed in the optimal position of com-parison with the mirror view of the same final cast. The amount and direction of distortion of each denture was analyzed and the effects of polishing and storage in each denture were compared, The obtained results were as follows : 1. In Group I, the denture was observed as the appearance distorted in the opposite direction of the mucosa and the postero-lateral part of palatal portion of the denture was observed as the appearance separated from the mucosa. Also, the buccal flanges of the denture were observed as the appearance distorted in the direction of the mucosa. 2. In Group II, the postero-lateral part of palatal portion of the denture was observed as the appearance separated slightly from the mucosa. The bilateral buccal flanges of denture were observed as the appearance distorted severely in the direction of the mucosa. 3. In Group III the bilateral part of the residual ridge crest portions and the buccal flanges of the denture were observed as the appearance distorted in the direction of the mucosa, and specially, the buccal flanges of the maxillary tuberosities were distorted severely. 4. In Group IV, the acrylic resin base of the buccal portion of the denture was observed as the appearance distorted in the opposite direction of the mucosa. 5. The phase-shifting profilometry, done with repeated measurements and correction procedures, was effective in comparing the amount and direction of distortion at every position after the laboratory work and the delivery of maxillary complete denture.

  • PDF

Numerical Analysis of Flow Characteristies inside innes part of Fluid Control Valve System (유동해석을 통한 유체제어벨브 시스템의 내부 유동 특성 분석)

  • Son, Chang-Woo;Seo, Tae-Il;Kim, Kwang-Hee;Lee, Sun-Ryong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.160-166
    • /
    • 2018
  • The worldwide semi-conductor market has been growing for a long time. Manufacturing lines of semi-conductors need to handle several types of toxic gases. In particular, they need to be controlled accurately in real time. This type of toxic gas control system consists of many different kinds of parts, e.g., fittings, valves, tubes, filters, and regulators. These parts obviously need to be manufactured precisely and be corrosion resistant because they have to control high pressure gases for long periods without any leakage. For this, surface machining and hardening technologies of the metal block and metal gasket need to be studied. This type of study depends on various factors, such as geometric shapes, part materials, surface hardening method, and gas pressures. This paper presents strong concerns on a series of simulation processes regarding the differences between the inlet and outlet pressures considering several different fluid velocity, tube diameters, and V-angles. Indeed, this study will very helpful to determine the important design factors as well as precisely manufacture these parts. The EP (Electrolytic Polishing) process was used to obtain cleaner surfaces, and hardness tests were carried out after the EP process.

The Effect of Inhibitors on the Electrochemical Deposition of Copper Through-silicon Via and its CMP Process Optimization

  • Lin, Paul-Chang;Xu, Jin-Hai;Lu, Hong-Liang;Zhang, David Wei;Li, Pei
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.319-325
    • /
    • 2017
  • Through silicon via (TSV) technology is extensively used in 3D IC integrations. The special structure of the TSV is realized by CMP (Chemically Mechanical Polishing) process with a high Cu removal rate and, low dishing, yielding fine topography without defects. In this study, we investigated the electrochemical behavior of copper slurries with various inhibitors in the Cu CMP process for advanced TSV applications. One of the slurries was carried out for the most promising process with a high removal rate (${\sim}18000{\AA}/Min$ @ 3 psi) and low dishing (${\sim}800{\AA}$), providing good microstructure. The effects of pH value and $H_2O_2$ concentration on the slurry corrosion potential and Cu static etching rate (SER) were also examined. The slurry formula with a pH of 6 and 2% $H_2O_2$, hadthe lowest SER (${\sim}75{\AA}/Min$) and was the best for TSV CMP. A novel Cu TSV CMP process was developed with two CMPs and an additional annealing step after some of the bulk Cu had been removed, effectively improving the condition of the TSV Cu surface and preventing the formation of crack defects by variations in wafer stress during TSV process integration.

Development and Animal Tests of Artificial Heart Valves (인공심장판막의 개발 및 동물실)

  • 이재영
    • Journal of Chest Surgery
    • /
    • v.20 no.3
    • /
    • pp.458-472
    • /
    • 1987
  • A heart supplies bloods of about 15, 000 liters to each human organ in a day. A normal function of heart valves is necessary to this act of heart. The disease of heart valve develops to a narrowness of a closure, resulting in an abnormal circulation of bloods. In an attempt to eliminate the affliction of heart valves, the operation method to repair with artificial heart valves has been developed and saved numerous patients over past 30 years. This replacement operation has been performed since early 1960`s in Korea, but all the artificial heart valves used are imported from abroad with very high costs until recent years. The artificial heart valve using pyrolytic carbon has been developed at KAIST, which was proved to be stable in the mechanical performance and durability. Therefore, the in viva performance of this valve was examined through animal tests. The artificial heart valves used in this study are tilting disc type valves, in which the disc were made of graphite coated with pyrolytic carbon and the cages were made of titanium. In viva testings of these valves were performed in 12 dogs, in which right ventriculo-pulmonary arterial [Croup I] or inter-aortic [Croup IV] valved conduit was implanted using polytetrafluoroethylene conduits containing KAIST valve and aortic valve [Group II] or pulmonary valve [Croup III] was replaced by a KAIST valve with a 21mm or 19mm tissue annulus diameter. In group I and II, pre-and post-operative transvalvular pressure gradient was measured and compared with other prosthetic valves. During post operative period laboratory examination was performed including hemoglobin, hematocrit, red cell count, white cell, lactic acid dehydrogenase and platelet. The eight surviving dogs were sacrificed and autopsy was performed at 2, 6, and 8 weeks. KAIST valve has low transvalvular gradient and relatively high orifice area. Average ventriculo-aortic peak systolic transvalvular gradient was 14 mmHg in 21 mm valve and 19 mmHg in 19 mm valve. The valve has slight intravascular hemolysis effect. Thrombogenic effect of low polishing quality and eddy currents around small orifice is high. The valve has vulnerability of disc movement. These animal tests suggest that the improvement of the heart valve design, surface polishing state and prescription methods.

  • PDF

Cu Through-Via Formation using Open Via-hole Filling with Electrodeposition (열린 비아 Hole의 전기도금 Filling을 이용한 Cu 관통비아 형성공정)

  • Kim, Jae-Hwan;Park, Dae-Woong;Kim, Min-Young;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.117-123
    • /
    • 2014
  • Cu through-vias, which can be used as thermal vias or vertical interconnects, were formed using bottom-up electrodeposition filling as well as top-down electrodeposition filling into open via-holes and their microstructures were observed. Solid Cu through-vias without voids could be successfully formed by bottom-up filling as well as top-down filling with direct-current electrodeposition. While chemical-mechanical polishing (CMP) to remove the overplated Cu layer was needed on both top and bottom surfaces of the specimen processed by top-down filling method, the bottomup process has an advantage that such CMP was necessary only on the top surface of the sample.

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

DENTINAL MICROLEAKAGE STUDY ON THE LIGHT CURABLE RESTORATIVE GLASS IONOMER CEMENT (광중합형 충전용 글라스 아이오노머 시멘트의 상아질 변연누출에 관한 정량분석)

  • Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.832-838
    • /
    • 1995
  • The purpose of this study was to evaluate the amount of marginal microleakage of 2 light curable GI cements(Fuji II LC & VariGlass), which contain some resin components. 4 volunteers kept on acrylic resin plates, which contained dentin disks with cavities filled with test materials for 2 weeks. The time when polishing was done(5 minutes and 24 hours after filling) and the use of protective agents were varied, so 8 groups with each 6 specimens were tested. After having specimens(disks with cavities filled with materials) penetrated with 1% Methylene Blue solution, specimens were stored in 40% nitric acid solution for 4 days to extract adsorbed dye material. Supernatants of centrifuged samples were diluted 5 times and Spectrophotometer was used to determine the degree of absorption. Dye concentration was calculated through the pre-obtained Linear Regression Curve. The results were as follows. 1. The best result was seen in groups (PF24, PV24) which were protected and polished 24 hours later and the opposite phenomenon was seen in groups(NF24, NV24) which were held without protection and polished 24 hours later. Groups polished S minutes later showed moderate leakage pattern. 2. Groups polished 5 minutes later showed similar leakage amount irrespective of using of protective agent. But statistically insignificant lower values were seen in VariGlass than in Fuji II LC groups, So It was considered that VariGlass may be more resistant to early moisture attack than Fuji II LC. 3. In groups polished 24 hours later, there was no significant difference between materials but was definitely significant difference according to the use of protective agent. If the cement in which polishing will be done 24 hours later, Protective agent should be used to cover the surface.

  • PDF