• Title/Summary/Keyword: Surface plasmon resonance

Search Result 308, Processing Time 0.025 seconds

Manufacturing Protein-DNA Chip for Depigmenting Agent Screening (전사인자 저해제 통한 미백제 탐색용 단백질 칩 제작)

  • Han Jung-Sun;Kwak Eun-Young;Lee Hyang-Bok;Shin Jlung-Hyun;Baek Seung-Hak;Chung Bong-Hyun;Kim Eun-Ki
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.479-483
    • /
    • 2004
  • An attempt was made to develop a proteinchip for screening of MITF (microphthalmia transcription factor) inhibitor. Binding of MITF to E-box causes transcription of several pigmenting genes including tyrosinase gene. We investigated binding of MITF and its DNA binding site (E-box) using a protein-DNA chip with various detection methods including flurorescence (Cyt3). SPR (surface plasmon resonance) and SPRi (surface plasmon resonance imaging). A fusion protein (MITF-Maltose Binding Protein) was attached on the glass plate by chemical modification. An inhibitory synthetic DNA oligomer, artificially designed based on the E-box sequence, inhibited the binding of MITF and E-box. These results showed the potentials of flurorescence-based MITF protein chip as a microarray for high throughput screening (HTS) system of depigmenting agents.

Surface Plasmon Resonance Ellipsometry Using an Air Injection System with an Extraction of Air System (공기주입 장치와 공기제거 장치를 사용한 표면 플라즈몬 공명 타원계측기)

  • Lee, Hong-Won;Cho, Eun-Kyoung;Jo, Jae-Heung;Won, Jong-Myoung;Shin, Gi-Ryang;CheGal, Won;Cho, Yong-Jai;Cho, Hyun-Mo
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.182-188
    • /
    • 2009
  • The surface plasmon resonance ellipsometer (SPRE), using a multiple air injection system with an extraction of air system, has been proposed and developed to minimize measurement error of signals due to diffusion of reagent into running buffer. Since the diffusion of reagent into running buffer affects the refractive index of the running buffer by changing the concentration, characteristics of binding between various bio-molecules don't appear clearly in measurement results. The diffusion between running buffer and reagent can be blocked by using an air bubble injection system. An extraction of air system is used to remove the noise signal due to unnecessary air bubbles flowing in a channel. Reliability of measurement results has been improved by using the valve system.

Localized Surface-Plasmon Resonance of Ag Nanoparticles Produced by Laser Dewetting to Improve the Performance of a Sensitized TiO2 Solar Cell (레이저 Dewetting에 의해 형성된 은 나노입자의 국소 표면플라즈몬 공명을 이용한 감응형 TiO2 태양전지 성능 향상)

  • Lee, Jeeyoung;Lee, Myeongkyu
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.215-219
    • /
    • 2018
  • In this paper we show that the localized surface-plasmon resonance of Ag nanoparticles produced by laser dewetting can be effectively utilized for improving the photocurrent and efficiency of a dye-sensitized $TiO_2$ solar cell. An Ag thin film deposited on a conducting glass substrate was dewetted into nanoparticles by a pulsed laser. A dye-sensitized $TiO_2$ solar cell fabricated on this substrate containing the Ag nanoparticles exhibited improved photovoltaic performance, compared to a reference cell. This is attributed to the increased light trapping that arises from the localized surface-plasmon resonance of the dewetted Ag nanoparticles.

Effect of Silicon Oxynitride Matrix on the Optical Properties of Au Nanoparticles Dispersed Composite Film (실리콘 산화질화물 기지상 적용에 따른 Au 나노입자 분산 복합체 박막의 광학적 특성)

  • Cho, Sung-Hun;Lee, Kyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.637-643
    • /
    • 2009
  • In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in $SiO_xN_y$ films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between $SiO_2$ and $Si_3N_4$. The Au nanoparticles were embedded in the $SiO_xN_y$ matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 $\mu$m thick Au:$SiO_xN_y$ nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using $SiO_2$ matrix. The use of $SiO_xN_y$ matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.

Characterization of binding specificity using GST-conjugated mutant huntingtin epitopes in surface plasmon resonance (SPR)

  • Cho, Hang-Hee;Kim, Tae Hoon;Kim, Hong-Duck;Cho, Jae-Hyeon
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.4
    • /
    • pp.185-194
    • /
    • 2021
  • Polyglutamine extension in the coding sequence of mutant huntingtin causes neuronal degeneration associated with the formation of insoluble polyglutamine aggregates in Huntington's disease (HD). Mutant huntingtin can form aggregates within the nucleus and processes of neurons possibly due to misfolding of the proteins. To better understand the mechanism by which an elongated polyglutamine causes aggregates, we have developed an in vitro binding assay system of polyglutamine tract from truncated huntingtin. We made GST-HD exon1 fusion proteins which have expanded polyglutamine epitopes (e.g., 17, 23, 32, 46, 60, 78, 81, and 94 CAG repeats). In the present emergence of new study adjusted nanotechnology on protein chip such as surface plasmon resonance strategy which used to determine the substance which protein binds in drug discovery platform is worth to understand better neurodegenerative diseases (i.e., Alzheimer disease, Parkinson disease and Huntington disease) and its pathogenesis along with development of therapeutic measures. Hence, we used strengths of surface plasmon resonance (SPR) technology which is enabled to examine binding specificity and explore targeted molecular epitope using its electron charged wave pattern in HD pathogenesis utilize conjugated mutant epitope of HD protein and its interaction whether wild type GST-HD interacts with mutant GST-HD with maximum binding affinity at pH 6.85. We found that the maximum binding affinity of GST-HD17 with GST-HD81 was higher than the binding affinities of GST-HD17 with other mutant GST-HD constructs. Furthermore, our finding illustrated that the mutant form of GST-HD60 showed a stronger binding to GST-HD23 or GST-HD17 than GST-HD60 or GST-HD81. These results indicate that the binding affinity of mutant huntingtin does not correlate with the length of polyglutamine. It suggests that the aggregation of an expanded polyglutamine might have easily occurred in the presence of wild type form of huntingtin.

Enhancement of the surface plasmon-polariton excitation in nanometer metal films

  • Kukushkin, Vladimir A.;Baidus, Nikoly V.
    • Advances in nano research
    • /
    • v.2 no.3
    • /
    • pp.173-177
    • /
    • 2014
  • This study is aimed to the numerical modeling of the surface plasmon-polariton excitation by a layer of active (electrically pumped) quantum dots embedded in a semiconductor, covered with a metal. It is shown that this excitation becomes much more efficient if the metal has a form of a thin (with thickness of several nanometers) film. The cause of this enhancement in comparison with a thick covering metal film is the partial surface plasmon-polariton localized at the metal-semiconductor interface penetration into air. In result the real part of the metal+air half-space effective dielectric function becomes closer (in absolute value) to the real part of the semiconductor dielectric function than in the case of a thick covering metal film. This leads to approaching the point of the surface plasmon-polariton resonance (where absolute values of these parts coincide) and, therefore, the enhancement of the surface plasmon-polariton excitation. The calculations were made for a particular example of InAs quantum dot layer embedded in GaAs matrix covered with an Au film. Its results indicate that for the 10 nm Au film the rate of this excitation becomes by 2.5 times, and for the 5 nm Au film - by 6-7 times larger than in the case of a thick (40 nm or more) Au film.

Design of Surface Plasmon Resonance Sensor with Bruggeman Effective Medium Layers (브러그만 유효 굴절 박막에서의 표면 플라즈몬 공명 센서 설계)

  • Bae, Young-Gyu;Lee, Seung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.118-122
    • /
    • 2020
  • This paper proposes a specific sensor-design strategy and the possibility of improving the sensing performance, which can be obtained by replacing part of the existing plasmonic sensor based on the Kretschmann configuration method with an effective refractive-index layer. By replacing the metal layer with an effective refractive-index layer composed of gold and the material to be sensed, an improvement in the detection performance, accompanied by an increase in the sensed incident angle, is observed, and the gold-composition ratio that demonstrates the best result is presented. Subsequently, an increase in the sensed incident angle generated in the previous step can be suppressed by randomly etching a portion of the prism adjacent to the metal layer in a sub-wavelength scale. Finally, this study analyzes the optimization of the metal-layer thickness in a given sensor structure. An effective refractive thin-film surface plasmon resonance sensor design that can achieve optimal sensing performance is then proposed.

Properties of the Dye Sensitized Solar Cell with Localized Surface Plasmon Resonance Inducing Au Nano Thin Films

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.417-421
    • /
    • 2016
  • We improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC) by preparing a working electrode (WE) with localized surface plasmon resonance (LSPR) by inducing Au thin films with thickness of 0.0 to 5.0 nm, deposited via sputtering. Field emission scanning electron microscopy and atomic force microscopy were used to characterize the microstructure of the blocking layer (BL) of the Au thin films. Micro-Raman measurement was employed to confirm the LSPR effect, and a solar simulator and potentiostat were used to evaluate the photovoltaic properties, including the impedance and the I-V of the DSSC of the Au thin films. The results of the microstructural analysis confirmed that nano-sized Au agglomerates were present at certain thicknesses. The photovoltaic results show that the ECE reached a value of 5.34% with a 1-nm thick-Au thin film compared to the value of 5.15 % without the Au thin film. This improvement was a result of the increase in the LSPR of the $TiO_2$ layer that resulted from the Au thin film coating. Our results imply that the ECE of a DSSC may be improved by coating with a proper thickness of Au thin film on the BL.

Detection and Kinetics of Mucosal Pathogenic Bacteria Binding with Polysaccharides

  • Chung, Kyong-Hwan;Park, Jung-Soon;Hwang, Hyun-Soo;Kim, Jin-Chul;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1191-1197
    • /
    • 2007
  • The detection and kinetics of mucosal pathogenic bacteria binding on polysaccharide ligands were studied using a surface plasmon resonance biosensor. The kinetic model applied curve-fitting to the experimental surface plasmon resonance sensorgrams to evaluate the binding interactions. The kinetic parameters for the mucosal pathogenic bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens) with the alginate ligand were determined from a kinetic model. In addition, the binding interactions of the mucosal pathogenic bacteria with polysaccharide binding pairs (Pseudomonas aeruginosa/alginate, Streptococcus pneumoniae/pneumococcal polysaccharide, Staphylococcus aureus/pectin) were also compared with their kinetic parameters. The rate constants of association for Pseudomonas aeruginosa with the alginate ligand were higher than those for Pseudomonas fluorescens. Serratia marcescens had no detectable interaction with the alginate ligand. The adhesion affinity of Pseudomonas aeruginosa with alginate was higher than that for the other binding pairs. The binding affinities of the pathogenic bacteria with their own polysaccharide were higher than that of Staphylococcus aureus with pectin. Measuring the contact angle was found to be a feasible method for detecting binding interactions between analytes and ligands.

A Study on the Sensitivity of Surface Plasmon Resonance Sensor Chips with Various Material Configurations in Angle and Intensity Detection Modes (공명각 및 반사광 측정 모드에서 다양한 물질 구성의 표면 플라즈몬 공명 센서 칩의 민감도 특성)

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.402-407
    • /
    • 2017
  • Characteristics of various material surface plasmon resonance (SPR) chips were investigated in angular interrogation mode and intensity interrogation mode. Among five metals, silver (Ag), gold (Au), copper (Cu), chromium (Cr) and titanium (Ti), three metals, Ag, Au and Cu were paid attention to since their characteristics can be easily analyzed in angular interrogation mode by investigating the change of their reflectance curves according to refractive index change from 1.331 to 1.335. Most of SPR chips with various configurations showed the similar property in angular interrogation mode. The application of the SPR chip made of Ag, Au and Cu or their combinations depends on their reflectance properties. In intensity interrogation mode, the operation range may be limited since the variation of the intensity was not linearly related to refractive index change ranging from 1.331 to 1.335. However, the SPR chip containing high ratio of Ag may be applicable to high sensitive detection due to their sharp reflectance curves in intensity interrogation mode.