• 제목/요약/키워드: Surface molecules

검색결과 1,132건 처리시간 0.028초

MOLECULAR SCALE MECHANISM ON EVAPORATION AND REMOVAL PROCESS OF ADHERENT MOLECULES ON SURFACE BY BURNT GAS

  • Yang, Y.J.;Lee, C.W.;Kadosaka, O.;Shibahara, M.;Katsuki, M.;Kim, S.P.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.121-128
    • /
    • 2006
  • The interaction between adherent molecules and gas molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand evaporation and removal processes of adherent molecules on metallic surface using high temperature gas flow. Methanol molecules were chosen as adherent molecules to investigate effects of adhesion quantity and gas molecular collisions because the industrial oil has too complex structures of fatty acid. Effects of adherent quantity, gas temperature, surface temperature and adhesion strength for the evaporation rate of adherent molecules and the molecular removal mechanism were investigated and discussed in the present study. Evaporation and removal rates of adherent molecules from metallic surface calculated by the molecular dynamics method showed the similar dependence on the surface temperature shown in the experimental results.

표면 에너지가 물 윤활 현상에 미치는 영향에 대한 분자시뮬레이션 연구 (Molecular Simulation of Influence of Surface Energy on Water Lubrication)

  • 김현준
    • Tribology and Lubricants
    • /
    • 제39권6호
    • /
    • pp.273-277
    • /
    • 2023
  • This paper presents a molecular dynamics simulation-based numerical investigation of the influence of surface energy on water lubrication. Models composed of a crystalline substrate, half cylindrical tip, and cluster of water molecules are prepared for a tribological-characteristic evaluation. To determine the effect of surface energy on lubrication, the surface energy between the substrate and water molecules as well as that between the tip and water molecules are controlled by changing the interatomic potential parameters. Simulations are conducted to investigate the indentation and sliding processes. Three different normal forces are applied to the system by controlling the indentation depth to examine the influence of normal force on the lubrication of the system. The simulation results reveal that the solid surface's surface energy and normal force significantly affect the behavior of the water molecules and lubrication characteristics. The lubrication characteristics of the water molecules deteriorate with the increasing magnitude of the normal force. At a low surface energy, the water molecules are readily squeezed out of the interface under a load, thus increasing the frictional force. Contrarily, a moderate surface energy prevents expulsion of the water molecules due to squeezing, resulting in a low frictional force. At a high surface energy, although squeezing of the water molecules is restricted, similar to the case of moderate surface energy, dragging occurs at the soil surface-water molecule interface, and the frictional force increases.

Molecular Dynamics Study on Evaporation Process of Adherent Molecules on Surface by High Temperature Gas

  • Yang, Young-Joon;Osamu Kadosaka;Masahiko Shibahara;Masashi Katsuki;Kim, Si-Pom
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2104-2113
    • /
    • 2004
  • Surface degreasing method with premixed flame is proposed as the removal method of adherent impurities on materials. Effects of adherent molecular thickness and surface potential energy on evaporation rate of adherent molecules and molecular evaporation mechanism were investigated and discussed in the present study. Evaporation processes of adherent molecules on surface molecules were simulated by the molecular dynamics method to understand thermal phenomena on evaporation processes of adherent molecules by using high temperature gas like burnt gas. The calculation system was composed of a high temperature gas region, an adherent molecular region and a surface molecular region. Both the thickness of adherent molecules and potential parameters affceted the evaporation rate of adherent molecules and evaporation mechanism in molecular scale.

도료의 부착성 개선을 위한 분자동역학적 연구 (Molecular Dynamics Study for Improving the Adhesion of Paint)

  • 양영준;이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.932-938
    • /
    • 2007
  • The interaction between adherent molecules and gas molecules was modeled in molecular scale and simulated by the molecular dynamics method in order to understand the evaporation and removal processes of adherent molecules on metallic surface using high temperature gas flow. Methanol molecules were chosen as adherent molecules to investigate effects of adhesion quantify and gas molecular collisions because the industrial oil has too complex structures of fatty acid. The effects of adherent quantify, gas temperature and surface temperature for the evaporation rate of adherent molecules and the molecular removal mechanism were investigated and discussed in the present study. Evaporation and removal rates of adherent molecules from metallic surface calculated by the molecular dynamics method showed the similar dependence on surface temperature shown in the experimental results.

A Molecular Dynamics Study of the Interaction of Oxygen Molecules with a Water Droplet

  • Ambrosia, Matthew Stanley
    • 한국환경과학회지
    • /
    • 제27권10호
    • /
    • pp.901-906
    • /
    • 2018
  • Water and oxygen are two of the most essential molecules for many species on earth. Their unique properties have been studied in many areas of science. In this study, the interaction of water and oxygen molecules was observed at the nano-scale. Using molecular dynamics, a water droplet with 30,968 water molecules was simulated. Then, 501 oxygen molecules were introduced into the domain. A few oxygen molecules were attracted to the surface of the water droplet due to van der Waals forces, and some oxygen molecules actually entered the water droplet. These interactions were visualized and quantified at four temperatures ranging from 280 to 370 K. It was found that at high temperatures, there was a higher possibility of the oxygen molecules penetrating the water droplet than that at lower temperatures. However, at lower temperatures, oxygen molecules were more likely to be found interacting at the surface of the water droplet than at high temperatures.

Imaging and Manipulation of Benzene Molecules on Si Surfaces Using a Variable-low Temperature Scanning Tunneling Microscope

  • Hahn, J. R.
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권7호
    • /
    • pp.1071-1074
    • /
    • 2005
  • A variable-low temperature scanning tunneling microscope (VT-STM), which operates from 77 to 350 K in ultrahigh vacuum, was built and used to study imaging and manipulation of benzene molecules on Si surfaces. Four types of benzene adsorption structures were first imaged on the Si(5 5 12)-2x1 surface. Desorption process of benzene molecules by tunneling electrons was studied on the Si(001)-2xn surface.

The Characteristics of Molecular Conjugated Optical Sensor Based on Silicon Nanowire FET

  • 이동진;김태근;황동훈;황종승;황성우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.486-486
    • /
    • 2013
  • Silicon nanowire devices fabricated by bottom-up methods are attracted due to their electrical, mechanical, and optical properties. Especially, to functionalize the surface of silicon nanowires by molecules has received interests. The changes in the characteristics of the molecules is delivered directly to the surface of the silicon nanowires so that the silicon nanowire can be utilized as an efficient read-out device by using the electronic state change of molecules. The surface treatment of the silicon nanowire with light-sensitive molecules can change its optical characteristics greatly. In this paper, we present the optical response of a SiNW field-effect-transistor (FET) conjugated with porphyrin molecules. We fabricated a SiNW FET and performed porphyrin conjugation on its surface. The characteristic and the optical response of the device shows a large difference after conjugation while there is not much change of the surface in the SEM observation. It attributed to the existence of few layer porphyrin molecules on the SiNW surface and efficient variation of the surface potential of the SiNW due to light irradiation.

  • PDF

Surface-Induced Self-Assembly of Conjugated Organic Molecules for High-Performance Organic Thin Film Transistors

  • Cho, Kil-Won
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.162-163
    • /
    • 2006
  • Control over surface induced self-assembly of electronically active pi-conjugated molecules provides great opportunities to fine-tune and optimize their electrical properties in organic electronics. In this study, with the aim of enhancing the electrical performances by promoting surface induced two-dimensional self-assembly in representative pi-conjugated molecules such as poly (3-hexylthiophene) and pentacene, we have controlled the intermolecular interaction at the interface between pi-conjugated molecules and substrate by using self-assembled monolayers functionalized with various groups. We will discuss the dependency of pi-conjugated molecules on the specific properties of the substrate surface and the effect of surface induced self-assembly on electrical performances in organic transistors.

  • PDF

Studies of the Organic Molecules Dissociative Surface Ionization in the Mass-Spectrometric Surface Ionization Method

  • Ilkhomjan Saydumarov;Dilshadbek Usmanov
    • Mass Spectrometry Letters
    • /
    • 제15권1호
    • /
    • pp.54-61
    • /
    • 2024
  • An improved voltage modulation method (VMM) was used to control the heat release and adsorption properties of the adsorbent. In this work, the voltage and flux modulation methods were considered under unified experimental conditions of dissociative surface ionization (SI) of polyatomic organic molecules, the criteria were found when under VMM conditions the current relaxation of SI carries information about the kinetic properties of thermal desorption of ionizable dissociation particles arriving on the surface of polyatomic molecules. Conditions were found under which the relaxation of the ionic current in the flux modulation method is determined by the kinetics of the heterogeneous dissociation reaction of the original polyatomic molecules. The values of the thermal desorption rate constant K+ and the activation energy E+ obtained with VMM for desorption of (CH3)2NCH+2 ions with m/z 58 by adsorption of imipramine and amitriptyline molecules agree well with each other and with the results for the desorption of the same ions by adsorption of other molecules. This confirms one of the basic conditions for the equilibrium process SI - the a degree (β coefficient) of the same particles SI on the same emitter surface is the same and does not depend on the way these particles are formed on the emitter surface.

Reactive Ion Scattering of Low Energy Cs+ from Surfaces. A Technique for Surface Molecular Analysis

  • Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.389-398
    • /
    • 2011
  • Although the currently available surface spectroscopic techniques provide powerful means of studying atoms and simple molecules on surfaces, the identification of complex molecules and functional groups is a major concern in surface analysis. This article describes a recently developed method of surface molecular analysis based on reactive ion scattering (RIS) of low energy (< 100 eV) $Cs^+$ beams. The RIS method can detect surface molecules via a mechanism in which a $Cs^+$ projectile picks up an adsorbate from the surface during the scattering process. The basic principles of the method are reviewed and its applications are discussed by showing several examples from studies of molecules and their reactions on surfaces.