• Title/Summary/Keyword: Surface modification

Search Result 1,914, Processing Time 0.038 seconds

A Thermal Study of the Harmful Chemical Species of Charcoal and Their Transformation during Combustion (숯의 유해물질과 이들의 연소 중 상변화에 대한 열분석 연구)

  • Yoon, Hye-On;Kim, Ki-Hyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • Charcoal burning in the process of manufacture and ordinary use often release many constituent chemical species. As a result of open burning, the chemical composition as well as the physical properties of original material changes through the modification of surface properties of charcoal. Surface modification could be more responsible toward the outside elements for surface adsorption, it becomes easy to adsorb more toxic elements through surface adsorption. In this study, four kinds of commercially available charcoal were studied against the chemical and thermal stability along with the heavy metals and organic hazardous substances. Thermo gravimetric analysis (TGA) and differential scanning calorimetry, from room temperature to $400^{\circ}C$, were performed to study the weight loss and the changes in the behavior of those substances. According to TGA analysis, about 10% of weight loss was happened before $200^{\circ}C$. It was found that related weight loss of this temperature region may responsible to the gas phase organic matter. Natural charcoal, K1 and C1 show 15% of loss during the reaction heated to $400^{\circ}C$, while the artificial charcoal K2, C2 show the weight loss of about 20% was found. This is consistent with the main organic matter and VOC analysis results shown. Chemical composition based on the x-ray diffraction analysis was carried out. X-ray diffraction analysis reveals the existence of chemical additive in the forms of $Ba(NO_3)_2$, $BaCO_3$, and $NaNO_3$.

Development of CFS Jacketing Retrofit Method for Rectangular High Strength Concrete Columns by Cross Sectional Shape Modification (4각형 고강도 콘크리트 기둥 단면 변형을 통한 CFS Jacketing 보강방법 개발)

  • Lee, Jong-Gil;Kim, Jang-Ho Jay;Park, Seok-Kyun;Kim, Jin-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.153-161
    • /
    • 2010
  • Numerous past studies have shown that safety and serviceability of many concrete infrastructures and buildings built in 1970's have far less strength capacities than their original intended design capacities, thereby requiring repair and strengthening. Currently, aged concrete structures are being repaired using various methods developed in the past. Unfortunately, these methods do not consider the specific conditions that these members are under, but they merely attach repairing materials on the external surface for random strength improvements. Therefore, in order to improve repair and strengthening methods by considering composite behavior between repairing material and structural member, enhanced construction methodologies are needed. Also, the enhanced repairing and strengthening methods must be able to be implemented on structural members constructed using high performance concrete to meet the present construction demand of building mammoth structures. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete (HSC) columns that can effectively improve column performance is developed. A square HSC column's cross-sectional shape is converted to an octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is surface wrapped using Carbon Fiber Sheets (CFS). The method allows maximum usage of confinement effect from externally jacketing CFS to improve strength and ductility of repaired HSC columns. The research results are discussed in detail.

Chemical and Morphological Change and Discoloration of Cedar Wood Stored Indoor (실내 보관 삼나무 목재의 재색 및 화학적·현미경적 변화 특성)

  • Lee, Kwang Ho;Cha, Mi Young;Chung, Woo Yang;Bae, Hyeun-Jong;Kim, Yoon Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.566-577
    • /
    • 2009
  • The modification of wood color occurs rapidly during the service period at indoor. It is crucial to investigate the characteristics of color change, chemical and microscopical modification of wood at indoor. Wood products made of Japanese cedar at different years were used for this work. The tests were performed in order to evaluate the degree of color change of wood surface, breakpoint of brightness from surface to inside of wood, chemical analysis with FT-IR, and microscopical characteristics using the LM and TEM. Surface color of cedar wood stored indoor were rapidly changed at early stage, particularly ${\Delta}a$ (yellow), and ${\Delta}b$ (red) values were steeply decreased for one year old indoor wood, ${\Delta}L$ (white) value was dropped until 5 years old indoor wood compared with control sample. Decrease of peaks related to polysaccharide and lignin was noticed, especially, lignin was severely degraded. Although degradation of cell wall limited only to surface layers of indoor wood, degradation pattern of indoor wood showed similar degradation pattern to natural weathering of wood during outdoor weathering or wood behavior under artificial UV irradiation.

A Study on the Compatibility of Nanocellulose-LDPE Composite (나노셀룰로오스-LDPE 복합체의 제조에 있어서 상용성에 대한 연구)

  • Cho, Eun Hyeong;Kim, Young Ho
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.124-131
    • /
    • 2021
  • As declarations of carbon neutrality are spreading throughout the world, much research is being conducted on biodegradable polymers. In this study, nanocellulose, which comprises the largest amount of natural polymer currently available in the world, was proposed as a substitute for non-biodegradable polymers. We chose to modify the surface functional group of crystalline nanocellulose using glycidoxypropyl trimethoxysilane (GPTMS), which is a silane coupling agent, and the product was then used to form a film with low density polyethylene (LDPE). We then conducted measurements using a Fourier transform infrared spectrophotometer (FT-IR) in addition to measuring hydrophilic/lipophilicity of the surface functional group modification of crystalline nitrocellulose as well as that of a polymer composite using the hybrid nanocellulose (H-NC). For compatibility with petroleum-based polymers, the best tensile strength and transparency was found when the H-NC was reacted at pH 14 and 1 wt% compared with LDPE. From the test results, we found that it is possible to modify the surface functional groups of nanocellulose using a silane coupling agent. In addition, the high compatibility of nanocellulose with petroleum-based polymers is expected to help in reaching carbon neutrality by reducing the use of fossil fuels.

Surface Modification of Polyurethane Film Using Atmospheric Pressure Plasma (대기압 플라스마에 의한 폴리우레탄 필름의 표면 개질)

  • Yang In-Young;Myung Sung-Woon;Choi Ho-Suk;Kim In-Ho
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.581-587
    • /
    • 2005
  • Commercial polyurethane film (PU) was modified with Ar plasma ionized in dielectric barrier discharge (DBD) plate-type reactor under atmospheric pressure. We measured the change of the contact angle and the surface fee energy with respect to the plasma treatment conditions such as treatment time, RF-power, and Ar gas flow rate. We also optimized the plasma treatment conditions to maximize the surface peroxide concentration. At the plasma treatment time of 70 sec, the power of 120 W and the Ar gas flow rate of 5 liter per minute (LPM), the best wettability and the highest surface fee energy were obtained. The 1,1 diphenyl-2-picrylhydrazyl (DPPH) method confirmed that the surface peroxide concentration was about 2.1 nmol/$\cm^{2}$ at 80 W, 30 sec, 6 LPM.

Bone Response to Anodized Titanium Implants in Rabbits

  • Lee, Jae-Hyun;Lee, Cheol-Won;Kim, Chang-Hyen;Pyo, Sung-Woon
    • Journal of Korean Dental Science
    • /
    • v.4 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Purpose: The quality of implant surface is one of the factors that influence wound healing of implant site and subsequently affect osseointegration. The objective of modification of the surface properties of an implant is to affect the biological consequence. The purpose of this study is to evaluate the biologic response of osseous tissue to anodized implants. Materials and Methods: Two machined titanium implants for control group were installed in a tibia of each rabbit and two anodized implants for test group were installed in the other tibia of each rabbit. At the moment the implants were installed, resonance frequency analysis (RFA) values were measured. After healing periods of 1, 2, 3, and 7 weeks, the implants were uncovered and RFA values were measured again. Removal torque was measured for one implant in the test group and one implant in the control group. Histological evaluation was executed in the other implants. Results: Both of test group and control group have the tendency of greater RFA change rate and removal torque value as healing periods became longer, but were statistically insignificant (P>0.05). However, in the case of the same healing period, the test group tended to have greater RFA change rate and removal torque than the control group (P<0.05). More active new bone formation from endosteal surface was noted on the anodized surface than machined surface in specimen after 1 week. There were no significant differences between the test group and control group in histological evaluations. Conclusion: In summary, the anodized surface showed slightly favorable results and it is postulated that it may facilitate improved stability in bone.

Blood-compatible Bio-inspired Surface of Poly(L-lactide-co-ε-caprolactone) Films Prepared Using Poor Co-solvent Casting (비용매 휘발법을 이용한 생체모사 혈액친화성 폴리락티드-카프로락톤 공중합체 필름의 제조)

  • Lim, Jin Ik;Kim, Soo Hyun
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.40-45
    • /
    • 2015
  • Simple poor-cosolvent casting was used to surface treat biodegradable elastic poly(L-lactide-co-${\varepsilon}$-caprolactone) (PLCL; 50:50) copolymer films that presented lotus-leaf-like structures. We evaluated whether the lotus-leaflike-structured PLCL (L-PLCL) films could be used as a biomaterial for artificial vascular grafts. The surface morphology, hydrophobicity, and antithrombotic efficiency of the films were examined while immersed in platelet-rich plasma (PRP) using scanning electron microscopy (SEM) and a contact angle meter. The recovery and crystallinity of the films were measured using a tensile-strength testing machine and an X-ray diffractometer, respectively. The solvent containing acetic acid, as a poor co-solvent, and methylene chloride mixed in a 1:2 ratio produced an optimal PLCL film with a water contact angle of approximately $124^{\circ}$. Furthermore, the surface of the L-PLCL films immersed in PRP showed a lower rate of platelet adhesion (<10%) than that of the surface of an untreated PLCL film immersed in PRP.

Surface and Chemical Properties of Surface-Modified UHMWPE Powder and Mechanical and Thermal Properties of Its Impregnated PMMA Bone Cement V. Effect of Silane Coupling Agent on the Surface Modification of UHMWPE Powder

  • Yang Dae Hyeok;Yoon Goan Hee;Shin Gyun Jeong;Kim Soon Hee;Rhee John M.;Khang Gilson;Lee Hai Bang
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.120-127
    • /
    • 2005
  • Conventional poly(methyl methacrylate) (PMMA) bone cement has been widely used as an useful biopolymeric material to fix bone using artificial prostheses. However, many patients had to be reoperated, due to the poor mechanical and thermal properties of conventional PMMA bone cement, which are derived from the presence of unreacted MMA liquid, the shrinkage and bubble formation that occur during the curing process of the bone cement, and the high curing temperature ($above 100^{\circ}C$) which has to be used. In the present study, a composite PMMA bone cement was prepared by impregnating conventional PMMA bone cement with ultra high molecular weight polyethylene (UHMWPE) powder, in order to improve its mechanical and thermal properties. The UHMWPE powder has poor adhesion with other biopolymeric materials due to the inertness of the powder surface. Therefore, the surface of the UHMWPE powder was modified with two kinds of silane coupling agent containing amino groups (3-amino propyltriethoxysilane ($TSL 8331^{R}$) and N-(2-aminoethyl)-3-(amino propyltrimethoxysilane) ($TSL 8340^{R}$)), in order to improve its bonding strength with the conventional PMMA bone cement. The tensile strengths of the composite PMMA bone cements containing $3 wt\%$ of the UHMWPE powder surface-modified with various ratios of $TSL 8331^{R}$ and $TSL 8340^{R}$ were similar or a little higher than that of the conventional PMMA bone cement. However, no significant difference in the tensile strengths between the conventional PMMA bone cement and the composite PMMA bone cements could be found. However, the curing temperatures of the composite PMMA bone cements were significantly decreased.

Growth and Migration of BALB/3T3 Fibroblast Cells on Nano-engineered Silica Beads Surface

  • Kim, Jihee;Chandra, Prakash;Yang, Jiyoon;Rhee, Seog Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3715-3721
    • /
    • 2013
  • In this study, the behavior of cells on the modified surface, and the correlation between the modified substrates and the response of cells is described. A close-packed layer of nano-sized silica beads was prepared on a coverslip, and the adhesion, proliferation, and migration of BALB/3T3 fibroblast cells on the silica layer was monitered. The 550 nm silica beads were synthesized by the hydrolysis and condensation reaction of tetraethylorthosilicate in basic solution. The amine groups were introduced onto the surfaces of silica particles by treatment with 3-aminopropyltrimethoxysilane. The close-packed layer of silica beads on the coverslip was obtained by the reaction of the amine-functionalized silica beads and the (3-triethoxysilyl)propylsuccinic anhydride treated coverslip. BALB/3T3 fibroblast cells were loaded on bare glass, APTMS coated glass, and silica bead coated glass with the same initial cell density, and the migration and proliferation of cells on the substrates was investigated. The cells were fixed and stained with antibodies in order to analyze the changes in the actin filaments and nuclei after culture on the different surfaces. The motility of cells on the silica bead coated glass was greater than that of the cells cultured on the control substrate. The growth rate of cells on the silica bead coated glass was slower than that of the control. Because the close-packed layer of silica beads gave an embossed surface, the adhesion of cells was very weak compared to the smooth surfaces. These results indicate that the adhesion of cells on the substrates is very important, and the actin filaments might play key roles in the migration and proliferation of cells. The nuclei of the cells were shrunk on the weakly adhered surfaces, and the S1 stage in which DNA is duplicated in the cell dividing processes might be retarded. As a result, the rate of proliferation of cells was decreased compared to the smooth surface of the control. In conclusion, the results described here are very important in the understanding of the interaction between implanted materials and biosystems.

A Study on Fabrication of Hydrophobic Modification on the Surface of Copper using 355nm-Pulsed Laser (355nm 펄스 레이저를 이용한 구리 표면의 소수성 개질에 관한 연구)

  • Yun, Dan Hee;Kang, Bo Seok;Park, Jun Han;Gwak, Cheng Yeol;Shin, Bo Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.101-105
    • /
    • 2016
  • Recently, the hydrophobic surface has been attracted because of the excellent opto-physical properties. Various processing methods such as chemical, mechanical, photolithographic and laser processing are competitively introduced for fabrication of hydrophobic surface of polymer, metal and ceramics. In this paper, we fabricated the hydrophobic surface of copper metal by simple method which irradiated 355 nm UV-pulsed laser in order to shape microgrooves and increased surface roughness through oxidation process at room temperature. Finally the contact angle is dramatically increased by maximum $45^{\circ}$, as a result of oxidation which simply created nanostructures on the microstructures without expensive chemical process.