Browse > Article
http://dx.doi.org/10.7464/ksct.2021.27.2.124

A Study on the Compatibility of Nanocellulose-LDPE Composite  

Cho, Eun Hyeong (Department of Chemical Engineering, Hankyong National University)
Kim, Young Ho (Department of Chemical Engineering, Hankyong National University)
Publication Information
Clean Technology / v.27, no.2, 2021 , pp. 124-131 More about this Journal
Abstract
As declarations of carbon neutrality are spreading throughout the world, much research is being conducted on biodegradable polymers. In this study, nanocellulose, which comprises the largest amount of natural polymer currently available in the world, was proposed as a substitute for non-biodegradable polymers. We chose to modify the surface functional group of crystalline nanocellulose using glycidoxypropyl trimethoxysilane (GPTMS), which is a silane coupling agent, and the product was then used to form a film with low density polyethylene (LDPE). We then conducted measurements using a Fourier transform infrared spectrophotometer (FT-IR) in addition to measuring hydrophilic/lipophilicity of the surface functional group modification of crystalline nitrocellulose as well as that of a polymer composite using the hybrid nanocellulose (H-NC). For compatibility with petroleum-based polymers, the best tensile strength and transparency was found when the H-NC was reacted at pH 14 and 1 wt% compared with LDPE. From the test results, we found that it is possible to modify the surface functional groups of nanocellulose using a silane coupling agent. In addition, the high compatibility of nanocellulose with petroleum-based polymers is expected to help in reaching carbon neutrality by reducing the use of fossil fuels.
Keywords
Carbon neutrality; Nanocellulose; Surface modification; Compatibility; Polymer composite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ching, Y. C., and Ng, T. S., "Effect of Preparation Conditions on Cellulose from Oil Palm Empty Fruit Bunch Fiber," BioRes., 9(4), 6373-6385 (2014).   DOI
2 Cho, M. J., and Park, B.-D., "Tensile and Thermal Properties of Nanocellulose-Reinforced Poly (Vinyl Alcohol) Nanocomposites," J. Ind. Eng. Chem., 17(1), 36-40, (2011).   DOI
3 Sirvio, J. A., Honkaniemi, S., Visanko, M., and Liimatainen, H., "Composite Films of Poly (Vinyl Alcohol) and Bifunctional Cross-Linking Cellulose Nanocrystals," ACS Appl. Mater. Interfaces, 7(35), 19691-19699 (2015).   DOI
4 Moon, R. J., Martini, A., Nairn, J., and Youngblood, J., "Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites," Chem. Soc. Rev., 40(7), 3941-3994 (2011).   DOI
5 Roohani, M., Habibi, Y., Belgacem, N. M., Ebrahim, G., Karimi, A. N., and Dufresne, A., "Cellulose Whiskers Reinforced Polyvinyl Alcohol Copolymers Manocomposites," Eur. Polym. J., 44(8), 2489-2498 (2008).   DOI
6 Stevanic, J. S., Joly, C., Mikkonen, K. S., Pirkkalainenm K., Serimaa, R., Remond, C., Toriz, G., Gatenholm, P., Tenkanen, M., and Salmen, L., "Bacterial Nanocellulose-Reinforced Arabinoxylan Films," J. Appl. Polym. Sci., 122(2), 1030-1039 (2011).   DOI
7 Missoum, K., Belgacern, M. N., and Bras, J., "Nanofibrillated Cellulose Surface Modification: a Review," Materials, 6(5), 1745-1766 (2013).   DOI
8 John, M. J., and Thomas, S., "Biofibres and Biocomposites," Carbohydr. Polym., 71(3), 343-364 (2008).   DOI
9 Li, W., Wu, Q., Zhao, X., Huang, Z., Cao, J., Li, J., and Liu, S., "Enhanced Thermal and Mechanical Properties of PVA Composites Formed with Filamentous Nanocellulose Fibrils," Carbohydr. Polym., 113, 403-410 (2014).   DOI
10 Khalil, H. P. S. A., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudech, K., Dungani, R., and Jawaid, M., "Production and Modification of Nanofibrillated Cellulose Using Aarious Mechanical Processes: a Review," Carbohydr. Polym., 99, 649-665 (2014).   DOI
11 Saito, T., Hirota, M., Tamura, N., Kimura, S., Fukuzumi, H., Heux, L., and Isogai, A., "Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions," Biomacromolecules, 10(7), 1992-1996 (2009).   DOI
12 Ashori, A., Sheykhnazari, S., Tabarsa, T., Shakeri, A., and Golalipour, M., "Bacterial Cellulose/Silica Nanocomposites: Preparation and Characterization," Carbohydr. Polym., 90(1), 413-418 (2012).   DOI
13 Latthe, S. S., Imai, H., Ganesan, V., Kappenstein, C., and Rao, A., "Optically Transparent Superhydrophobic TEOS-Derived Silica Films by Surface Silylation Method," J. Sol-Gel Sci. Technol., 53(2), 208-215 (2010).   DOI
14 Wan, Y., Luo, H., He, F., Liang, H., Huang, Y., and Li, X. L., "Mechanical, Moisture Absorption, and Biodegradation Behaviours of Bacterial Cellulose Fibre-Reinforced Starch Biocomposites," Compos. Sci. Technol., 69(7-8), 1212-1217 (2009).   DOI
15 Goncalves, G., Marques, P. A. A. P., Trindade, T., Neto, C. P., and Gandini, A., "Superhydrophobic Cellulose Nanocomposites," J. Colloid Interface Sci., 324(1-2), 42-46 (2008).   DOI
16 Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., and Miraki, R., "Reducing Water Sensitivity of a Alginate Bio-Nanocomposite Film Using Cellulose Nanoparticles," Int. J. Biol. Macromol., 54, 166-173 (2013).   DOI
17 Agustin, M. B., Ahmmad, B., De Leon, E. R. P., Buenaobra, J. L., Salazar, J. R., and Hirose, F., "Starch-Based Biocomposite Films Reinforced with Cellulose Nanocrystals From Garlic Stalks," Polym. Compos., 34(8), 1325-1332 (2013).   DOI
18 Raabe, J., de Souza Fonseca, A., Bufalino, L., Ribeiro, C., Martins, M. A., Marconcini, J. M., and Tonoli, G. H. D., "Evaluation of Reaction Factors for Deposition of Silica (SiO2) Nanoparticles on Cellulose Fibers," Carbohydr. Polym., 114, 424-431 (2014).   DOI
19 Shi, J., Lu, L., Guo, W., Zhang, J., and Cao, Y., "Heat Insulation Performance, Mechanics and Hydrophobic Modification of Cellulose-SiO2 Composite Aerogels," Carbohydr. Polym., 98(1), 282-289 (2013).   DOI
20 Ljungberg, N., Bonini, C., Bortolussi, F., Boisson, C., Heux, L., and Cavaille, J. Y., "New Nanocomposite Materials Reinforced with Cellulose Whiskers in Atactic Polypropylene: Effect of Surface and Dispersion Characteristics," Biomacromolecules, 6(5), 2732-2739 (2005).   DOI
21 Ching, Y. C., Rahman, A., Ching, K. Y., Sukiman, N. L., and Cheng, H. C., "Preparation and Characterization of Polyvinyl Alcohol-Based Composite Reinforced with Nanocellulose and Nanosilica," BioRes., 10(2), 3364-3377 (2015).
22 Oksman, K., Aitomaki, Y., Mathew, A. P., Siqueira, G., Zhou, Q., Butylina, S., Tanpichai, S., Zhou, X., and Hooshmand, S., "Review of the Recent Developments in Cellulose Nanocomposite Processing," Composites, Part A, 83, 2-18 (2016).   DOI
23 Azeredo, H. M. C., Mattoso, L. H. C., Avena-Bustillos, R. J., Filho, G. C., Munford, M. L., Wood, D., and McHugh, T. H., "Nanocellulose Reinforced Chitosan Composite Films as Affected by Nanofiller Loading and Plasticizer Content," J. Food Sci., 75(1), N1-N7 (2010).   DOI
24 Abraham, E., Deepa, B., Pothan, L. A., Jacob, M., Thomas, S., Cvelbar, U., and Anandjiwala, R., "Extraction of Nanocellulose Fibrils from Lignocellulosic Fibres: A Novel Approach," Carbohydr. Polym., 86(4), 1468-1475 (2011).   DOI
25 Olah, G. A., Goeppert, A., and Prakash, G. K. S., "Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: from Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons," J. Org. Chem., 74(2), 487-498 (2009).   DOI
26 Field, C. B., Campbell, J. E., and Lobell, D. B., "Biomass Energy: the Scale of the Potential Resource," Trends Ecol. Evol., 23(2), 65-72 (2008).   DOI
27 Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., and Liou, N.-S., "Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber," Materials, 9(8), 644 (2016).   DOI
28 Nogi, M., Iwamoto, S., Nakagaito, A. N., and Yano, H., "Optically Transparent Nanofiber Paper," Adv. Mater, 21(16), 1595-1598 (2009).   DOI
29 Habibi, Y., Lucia, L. A., and Rohas, O. J., "Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications," Chem. Rev., 110(6), 3479-3500 (2010).   DOI
30 Naghsh, M., Sadeghi, M., Moheb, A., Chenar, M. P., and Mohagheghian, M., "Separation of Ethylene/ethane and Propylene/Propane by Cellulose Acetate-Silica Nanocomposite Membranes," J. Membr. Sci., 423, 97-106 (2012).   DOI
31 Chaichi, M., Hashemi, M., Badii, F., and Mohammadi, A., "Preparation and Characterization of a Novel Bionanocomposite Edible Film Based on Pectin and Crystalline Nanocellulose," Carbohydr. Polym., 157, 167-175 (2017).   DOI
32 Samir, M. A. S. A., Alloin, F., Sanchez, J.-Y., and Dufresne, A., "Cellulose Nanocrystals Reinforced Poly (Oxyethylene)," Polymer, 45(12), 4149-4157 (2004).   DOI
33 Le, D., Kongparakul, S., Samart, C., Phanthong, P., Karnjanakom, S., Abudula, A., and Guan, G., "Preparing Hydrophobic Nanocellulose-Silica Film by a Facile One-Pot Method," Carbohydr. Polym., 153, 266-274 (2016).   DOI