Chemical and Morphological Change and Discoloration of Cedar Wood Stored Indoor

실내 보관 삼나무 목재의 재색 및 화학적·현미경적 변화 특성

  • Lee, Kwang Ho (Department of Forest Products and Technology, College of Agriculture, Chonnam National University) ;
  • Cha, Mi Young (Department of Forest Products and Technology, College of Agriculture, Chonnam National University) ;
  • Chung, Woo Yang (Department of Forest Products and Technology, College of Agriculture, Chonnam National University) ;
  • Bae, Hyeun-Jong (Department of Forest Products and Technology, College of Agriculture, Chonnam National University) ;
  • Kim, Yoon Soo (Department of Forest Products and Technology, College of Agriculture, Chonnam National University)
  • 이광호 (전남대학교 농업생명과학대학 임산공학과) ;
  • 차미영 (전남대학교 농업생명과학대학 임산공학과) ;
  • 정우양 (전남대학교 농업생명과학대학 임산공학과) ;
  • 배현종 (전남대학교 농업생명과학대학 임산공학과) ;
  • 김윤수 (전남대학교 농업생명과학대학 임산공학과)
  • Received : 2009.03.05
  • Accepted : 2009.10.01
  • Published : 2009.11.25

Abstract

The modification of wood color occurs rapidly during the service period at indoor. It is crucial to investigate the characteristics of color change, chemical and microscopical modification of wood at indoor. Wood products made of Japanese cedar at different years were used for this work. The tests were performed in order to evaluate the degree of color change of wood surface, breakpoint of brightness from surface to inside of wood, chemical analysis with FT-IR, and microscopical characteristics using the LM and TEM. Surface color of cedar wood stored indoor were rapidly changed at early stage, particularly ${\Delta}a$ (yellow), and ${\Delta}b$ (red) values were steeply decreased for one year old indoor wood, ${\Delta}L$ (white) value was dropped until 5 years old indoor wood compared with control sample. Decrease of peaks related to polysaccharide and lignin was noticed, especially, lignin was severely degraded. Although degradation of cell wall limited only to surface layers of indoor wood, degradation pattern of indoor wood showed similar degradation pattern to natural weathering of wood during outdoor weathering or wood behavior under artificial UV irradiation.

실내에서 일어나는 목재의 표면 열화특성을 재색, 화학적 및 해부학적 변화 차원에서 분석하였다. 실험대상으로는 실내에서 장기간 보관중인 삼나무 목제품을 사용하였다. 실내 보존 초기에는 황색도와 적색도가 급격히 변하였고 5년 사이에 백색도의 감소가 두드러졌다. 화학성분의 분석결과 셀룰로오스, 헤미셀룰로오스, 리그닌 성분 모두 감소하였으나 리그닌의 감소가 더 컸다. 현미경 관찰 결과 5년이 경과한 목제품에서는 목재표면에서 2~3개 층에서 리그닌이 분해되어 중간층이 분리되었다. 실내 환경조건에서 발생되는 표면 열화 특성은 야외에서 발생되는 표면열화 특성과 매우 유사하였으나 그 정도는 미약하였다.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. Beckers, E. P. J., M. De Meijer, and H. Militz. 1998. Performance of finishes on wood that is chemically modified by acetylation. J. Coatings Technol. 70(878): 59~67 https://doi.org/10.1007/BF02697812
  2. Borgin, K. 1971. The mechanism of the breakdown of the structure of wood due to environmental factors. J. Inst. Wood Sci. 5: 26~30
  3. Castellan, A, N. Colombo, H. Nourmamode, J. H. Zhu, D. Lachenal, R. A. Davidson, et al. 1990. Discoloration of ${\alpha}-carbonyl-free$ lignin model compounds under UV light exposure. J. Wood Chem. Technol. 10(4): 461~493 https://doi.org/10.1080/02773819008050252
  4. Chang, S. T., D. N. S. Hon, and W. C. Feist. 1982. Photodegradation and photoprotection of wood surfaces. Wood Fiber Sci. 14: 104~117
  5. Chang, S. T. and T.-F. Yeh. 2001. Protection and fastness of green color of moso bamboo (Phyllostachys pubescens Mazel) treated with chromium-based reagents. J. Wood Sci. 47: 228~232 https://doi.org/10.1007/BF01171226
  6. Derbyshire, H. and E. R. Miller. 1981. The photodegradation of wood during solar irradiation. Part 1. Effects on the structural integrity of thin wood strips. Holz Roh-Werkst. 39: 341~350 https://doi.org/10.1007/BF02608404
  7. Donaldson, L. A. 1992. Lignin distribution during latewood formation in Pinus radiata D. Don. IAWA Bull n.s. 13: 381~387 https://doi.org/10.1163/22941932-90001291
  8. Evans, P. D. 1989. Structural changes in Pinus radiata during weathering. J. Inst. Wood Sci. 11(5): 172~181
  9. Evans, P. D., P. D. Thay, and K J. Schmalzl. 1996. Degradation of wood surfaces during natural weathering. Effects of lignin and cellulose and on the adhesion of acrylic latex primers. Wood Sci. Technol. 30: 411~422
  10. Evans, P. D. 2001. Wood products: weathering. In: Buschow KHT, Cahn RW, Flemings, M. C., B. Iischner, E. J. Kramer, S. Mahajen. (eds). The encyclopaedia of materials science and technology. Elsevier, Oxford, p. 6
  11. Feist, W. C. 1977. Wood surface treatments to prevent extractive staining of paints. Forest Prod. J. 27: 50~54
  12. Feist, W. C. and E. A. Mraz. 1978. Comparison of outdoor and accelerated weathering of unprotected softwoods. Forest Prod. J. 28: 38~43
  13. Feist, W. C. 1979. Protection of wood surfaces with chromium trioxide. USDA Forest Serv. Res. Pap. FPL-339. p. 11
  14. Feist, W. C., D. N.-S. Hon. 1984. Chemistry of weathering and protection. In: Rowel1, R. M. (Ed). Wash. D.C.: A.C.S. Chemistry of Solid Wood, Chap. 11, pp. 401~451
  15. Feist, W. C. 1990. Outdoor wood weathering and protection. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry, and preservation. American Chemical Society, Washington DC, pp. 263~298
  16. Feist, W. C. and R. S. Williams. 1991. Weathering durability of chromium treated southern pine. Forest Prod. J. 41: 8~14
  17. Feist, W. C. 1994. Weathering performance of finished aspen siding. Forest Prod. J. 44: 15~23
  18. Fenel, D. and G. Wegener. 1984. Wood. Chemistry, Ultrastructure, Reactions. Walter. de Gruyter, Berlin
  19. Garcia, R., M. C. Triboulot, A. Merlin, and X. Deglise. 2000. Variation of the viscoelastic properties of wood as a surface finishes substrate. Wood Sci. Technol. 34(2): 99~107 https://doi.org/10.1007/s002260000035
  20. Hon, D. N.-S., S. C. Clemson, and W. C. Feist. 1986. Weathering characteristics of hardwood surfaces. Wood Sci. Technol. 20: 169~183 https://doi.org/10.1007/BF00351028
  21. HunterLab instruments. 2008. CIE $L^*a^*b^*$ Color Scale, CIELAB (CIE 1976 $L^*$, $a^*$, $b^*$). Application Note, 8(7): 1$\sim$4
  22. Kalnins, M. A. 1966. Surface characteristics of wood as they affect the durability of finishes. Part 2, Photochemical degradation of wood. U.S. For. Prod. Lab. Report 57: 23~60
  23. Kataoka, Y., M. Kiguchi1, R. S. Williams, and P. D. Evans. 2007. Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforschung 61: 23~27 https://doi.org/10.1515/HF.2007.005
  24. Kim, J. S., A. P. Singh, S. G. Wi, G. Koch, and Y. S. Kim. 2008. Ultrastructural characteristics of cell wall disintegration of Pinus spp. In the windows of an old Buddhist temple exposed to natural weathering. Int. Biodeter. Biodegr. 61: 194~198 https://doi.org/10.1016/j.ibiod.2007.11.002
  25. Kuo, M.-L. and N. Hu. 1991. Ultrastructural changes of photodegradation of wood surface exposed to UV. Holzforschung 45: 347~353 https://doi.org/10.1515/hfsg.1991.45.5.347
  26. Muller, U., M. Ratzsch, M. Schwanninger, M. Steiner, and H. Zobl. 2003. Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochemistry and Photobiology B: Biology 69: 97~105 https://doi.org/10.1016/S1011-1344(02)00412-8
  27. Owen, J. A., N. L. Owen, and W. C. Feist. 1993. Scanning electron microscope and infrared studies of weathering in Southern pine. J. Mol. Structure 300: 105$\sim$114 https://doi.org/10.1016/0022-2860(93)87010-7
  28. Plackett, D. V., E. A. Dunningham, and A. P. Singh. 1992. Weathering of chemically modified wood. Accelerated weathering of acetylated radiata pine. Holz Roh-Werkst. 50: 135~140 https://doi.org/10.1007/BF02663254
  29. Podgorski L., A. Merlin, and J. M. Saiter. 1994. Natural and artificial ageing of an alkyd based wood finish: Calorimetric investigations. J. Therm. Anal. 41: 1319∼1324 https://doi.org/10.1007/BF02549926
  30. Podgorski, L., A. Merlin, and X. Deglise. 1996. Analysis of the natural and artificial weathering of a wood coating by measurement of the glass transition temperature, Holzforschung 50: 282~287 https://doi.org/10.1515/hfsg.1996.50.3.282
  31. Ruel, K., J. Comtat, and F. Barnoud. 1977. Localization histologiquie et ultrastrurale des xylanes dans es parios primaries des tissues d'Arundo donax. C R Acad Sci Paris, Serie D 1421~1424
  32. Sell, J. and W. C. Feist. 1986. Role of density in the erosion of wood during weathering. Forest Prod. J. 36: 57~60
  33. Sundell, P. and M. De Meier. 2001. Influence of acetylation on discoloration and weathering of (coated) wood. Workshop on photodegradation COST E 18 Meeting, Paris
  34. Thiery, J. P. 1967. Mise en evidence des polysaccharides sur coupes fines en microscopie electronique. J. Microsc. 6: 987~1018
  35. Tshabalala, M. A. and J. E. Gangstad. 2003. Accelerated weathering of wood surfaces coated with multifunctional alkoxysilanes by sol-gel deposition. J. Coatings Technol. 75(943): 37~43 https://doi.org/10.1007/BF02730098
  36. Tylli, H., I. Forsskahl, and C. Olkkonen. 1993. A spectroscopic study of photoirradiated cellulose. J. Photochem. Photobiol. A: Chem. 76: 143~149 https://doi.org/10.1016/1010-6030(93)80186-D
  37. Williams, R. S. and W. C. Feist. 1985. Wood modified by inorganic salts: Mechanism and properties. I. Weathering rate, water repellency, and dimensional stability of wood modified with chromium nitrate versus chromic acid. Wood Fiber Sci. 17(2): 184∼198
  38. Williams, R. S., M. T. Knaebe, P. G. Sotos, and W. C. Feist. 2001a. Erosion rates of wood during natural weathering. Part I. Effects of grain angle and surface texture. Wood Fiber Sci. 33: 31~42
  39. Williams, R. S., M. T. Knaebe, and W. C. Feist. 2001b. Erosion rates of wood during natural weathering. Part II. Earlywood and latewood erosion rates. Wood Fiber Sci. 33: 43∼49
  40. Yalinkilic, M. K., Y. Imamura, M. Takahashi, R. Ilhan, Z. Demirci, A. C. Yalinkiliç, and H. Peker. 1999. Weathering durability of CCB-impregnated wood for clear varnish coatings. J. Wood Sci. 45: 502~514 https://doi.org/10.1007/BF00538961
  41. Zavarin, E., L. G. Cool, and S. J. Jones. 1991. Analysis of solid wood surfaces by internal reflection Fourier transform infrared spectroscopy (FTIR-IRS). J. Wood Chem. Tech. 11: 41$\sim$56 https://doi.org/10.1080/02773819108050261