• Title/Summary/Keyword: Surface marker method

Search Result 80, Processing Time 0.025 seconds

Numerical Simulation of Spilling Breaker using the Modified Marker-density Method (수정된 밀도함수법을 이용한 Spilling Breaker의 수치시뮬레이션)

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Numerical simulations for the flows containing free surface remain difficult problems because the drastic differences of physical properties of water and air, The difference of densities makes the solution instable in particular. For the stabilities of the solutions, the most typical methods to simulate free surface flows, such as Volume Of Fluid(VOF) and Level-Set(LS) methods, impose transient zones where the physical prosperities are continuously distributed. The thickness of the transient zone is the source of the numerical errors. The other side, marker-density method does not use such a transient zone. In the traditional marker-density method, however, the air velocities of free surface cells are extrapolated from the water velocity, and the pressures on the free surface are extrapolated from the air pressures for the stability of the solution. In this study, the marker-density method is modified for the decrease of such numerical errors. That is, the pressure on the free surface is determined to coincide with the pressure gradient terms of the governing equations, and the velocity of free surface cells are calculated with the governing equations. Two-dimensional steady spilling breakers behind of a submersed hydrofoil and three-dimensional spilling breaker near a wedge shaped ship model are simulated using INHAWAVE-II including the modified marker-density(MMD) method. The results are compared with the results of Fluent V6.3 including VOF method and several published research results.

A FUNDAMENTAL STUDY ON THE NUMERICAL SIMULATION OF WAVE BREAKING PHENOMENON AROUND THE FORE-BODY OF SHIP (선수주위 쇄파현상의 수치시뮬레이션에 관한 기초연구)

  • Eom T.J.;Lee Y.-G.;Jeong K.-L.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.195-199
    • /
    • 2005
  • Wave breaking phenomenon near the fore body of a ship is numerically simulated. The ship advance with uniform velocity in calm water. For the simulation, incompressible Navier-Stokes equations and continuity equation are adopted as governing equations. The simulation is carried out in staggered variable mesh system with finite difference method. Marker and Cell(MAC) method and Marker-Density method are employed to track the free surface. Body boundary conditions are satisfied with the adoption of porosity method and no-slip condition on the hull surface. The ship model has a wedge type fore-body, and the computational domain is an appropriate region around the fore-body. The computation results are compared with some experimental results. Also the difference of the free surface tracking methods are discussed.

  • PDF

The visual Simulation of Fluid Flow with Free Surface in a Virtual Water Tank (가상수조에서 자유표면을 가진 유체흐름의 가시화시뮤레이션)

  • 김남형;김남국
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2000
  • SMAC method is, one of the numerical simulation techniques, modified from the original MAC for the time-dependent variation of fluid flows. The Navier-Stokes equation for incompressible time-dependent viscous flow is applied and, also marker particles which move with the fluid are used. Two-dimensional numerical computations of fluid flow are carried out in a virtual water tank. This paper has shown very well the movements of marker particles using SMAC method.

  • PDF

Comparison of Numerical Methods for Two-dimensional Wave Breaker on a Plane Beach of Constant Slope (2차원 Beach에서 쇄파의 시뮬레이션을 위한 수치계산기법의 비교)

  • Jeong K. L.;Lee Y.-G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.119-125
    • /
    • 2004
  • Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. The second-order Stokes wave theory and solitary wave theory are employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with the plane beach of constant slope in surf zone. The results are compared with each other. The marker-density method is better then the hybrid method. Also they are compared with other existing experimental results. The Agreement between the experimental data and the computation results is good.

  • PDF

Numerical simulation of the free surface around a circular column in regular waves using modified marker-density method

  • Yang, In-Jun;Lee, Young-Gill;Jeong, Kwang-Leol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.610-625
    • /
    • 2015
  • In this paper the wave run-up around a circular column in regular waves is numerically calculated to investigate the applicability of the Modified Marker-Density (MMD) method to prediction of wave run-up around an offshore platform. The MMD method is one of the methods to define the highly nonlinear free surface. The governing equations are the Navier-Stokes equations and the continuity equation which are computed in Cartesian grid system. To validate incident waves generated by numerical simulation, those are compared with the solutions of the Stokes $5^{th}$ order wave theory. The wave run-up simulations are performed varying the steepness and period of incident waves as referred experimental data. The numerical results are compared to the experimental data and the results show good agreements.

Numerical Analysis of Free Surface Flows Using Adaptable Surface Particle Method based on Grid System (격자기반 적합 표면입자법을 이용한 자유표면유동 수치해석)

  • Shin, Young-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • In this study, the surface marker method, one of the particle tracking methods, used to track the free surface is extended to cover the more general cases easily including the collision and separation of the free surface. In surface particle method to redistribute particles effectively using the grid system, the free surface is composed of the sum of quadrilaterals having four curves where fixed markers are placed at ends of each curve. Fixed markers are used to know how curves are connected to each other. The position of fixed markers can move as the free surface deforms but all fixed markers cannot be deleted during all time of simulation to keep informations of curve connection. In the case of the collision or separtion of the free surface where several curves can be intersected disorderly, severe difficulties can occur to define newly states of curve connection. In this study, the adaptable surface parTicle method without fixed markers is introduced. Intersection markers instead of the fixed markers are used to define quadrilaterals. The position of the intersection markers is defined to be the intersection point between the free surface and the edge of the grid and it can be added or deleted during the time of simulation to allow more flexibilities. To verify numerical schemes, two flow cases are simulated and the numerical results are compared with other's one and shown to be valid.

Numerical Simulation of Wave Breaking Near Ship Bow

  • Lee, Young-Gill;Kim, Nam-Chul;Yu, Jin-Won;Choi, Si-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.16-27
    • /
    • 2008
  • The interaction between advancing ships and the waves generated by them plays important roles in wave resistances and ship motions. Wave breaking phenomena near the ship bow at different speeds are investigated both numerically and experimentally. Numerical simulations of free surface profiles near the fore bodies of ships are performed and visualized to grasp the general trend or the mechanism of wave breaking phenomena from moderate waves rather than concentrating on local chaotic irregularities as ship speeds increase. Navier-Stokes equations are differentiated based on the finite difference method. The Marker and Cell (MAC) Method and Marker-Density Method are employed, and they are compared for the description of free surface conditions associated with the governing equations. Extra effort has been directed toward the realization of extremely complex free surface conditions at wave breaking. For this purpose, the air-water interface is treated with marker density, which is used for two layer flows of fluids with different properties. Adaptation schemes and refinement of the numerical grid system are also used at local complex flows to improve the accuracy of the solutions. In addition to numerical simulations, various model tests are performed in a ship model towing tank. The results are compared with numerical calculations for verification and for realizing better, more efficient research performance. It is expected that the present research results regarding wave breaking and the geometry of the fore body of ship will facilitate better hull form design productivity at the preliminary ship design stage, especially in the case of small and fast ship design. Also, the obtained knowledge on the impact due to the interaction of breaking waves and an advancing hull surface is expected to be applicable to investigation of the ship bow slamming problem as a specific application.

Numerical Simulation of Breaking Waves around a Two-Dimensional Rectangular Cylinder Piercing Free Surface

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.29-43
    • /
    • 2001
  • In this paper, free surface flows around an advancing two-dimensional rectangular cylinder piercing the free surface are studied using numerical and experimental methods. Especially, wave breaking phenomenon around the cylinder is treated in detail. A series of numerical simulations and experiments were performed for the purpose of comparison. For the numerical simulations, a finite difference method was adopted with a rectangular grid system, and the variation of the free surface was computed by the marker density method. The computational results are compared with the experiments. It is confirmed that the present numerical method is useful for the numerical simulation of nonlinear free surface waves around a piercing body.

  • PDF

A numerical simulation method for the flow around floating bodies in regular waves using a three-dimensional rectilinear grid system

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.277-300
    • /
    • 2016
  • The motion of a floating body and the free surface flow are the most important design considerations for ships and offshore platforms. In the present research, a numerical method is developed to simulate the motion of a floating body and the free surface using a fixed rectilinear grid system. The governing equations are the continuity equation and Naviere-Stokes equations. The boundary of a moving body is defined by the interaction points of the body surface and the centerline of a grid. To simulate the free surface the Modified Marker-Density method is implemented. Ships advancing in regular waves, the interaction of waves by a fixed circular cylinder array and the response amplitude operators of an offshore platform are simulated and the results are compared with published research data to check the applicability. The numerical method developed in this research gives results good enough for application to the initial design stage.

A Numerical Solution. Method for Two-dimensional Nonlinear Water Waves on a Plane Beach of Constant Slope

  • Lee, Young-Gill;Heo, Jae-Kyung;Jeong, Kwang-Leol;Kim, Kang-Sin
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. The second-order Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with the plane beach of constant slope in surf zone. The results are compared with other existing experimental results. Agreement between the experimental data and the computation results is good.