• Title/Summary/Keyword: Surface free energy

Search Result 636, Processing Time 0.027 seconds

Numerical Analysis on Nonlinear Sloshing Problem using Finite Element Method (유한 요소법을 이용한 비선형 슬러싱 문제 해석)

  • Kyoung Jo-Hyun;Kim Jang-Whan;Cho Seok-Kyu;Bai Kwang-June
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.216-223
    • /
    • 2004
  • A nonlinear sloshing problem is numerically simulated. During excessive sloshing the sloshinginduced impact load can cause a critical damage on the tank structure. A three-dimensional free-surface flow in a tank is formulated in the scope of potential flow theory. The exact nonlinear free-surface condition is satisfied numerically. A finite-element method based on Hamiltons principle is employed as a numerical scheme. The problem is treated as an initial-value problem. The computations are made through an iterative method at each time step. The hydrodynamic loading on the pillar in the tank is computed.

  • PDF

Effect of Surface Free Energies on Mechanical Properties of Epoxy/Polyurethane Blend System (에폭시/폴리우레탄 블렌드 시스템의 표면 자유에너지 변화가 기계적 특성에 미치는 영향)

  • 박수진;진중성;이재락;박병기
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2000
  • A blend system prepared from epoxy(EP) and polyurethane (PU) was investigated in terms of the contact angle and mechanical properties. The contents of EP/PU were varied within 100/0~100/60 phr in the presence of 20 phr DDM (4,4'-diamino diphenyl methane) as a curing agent for epoxy resin. Contact angle measurements were performed employing a Rame-Hart contact angle goniometer. Deionized water and diiodomethane were chosen as the testing liquids. In this work, Owens-Wendt and Wu's models using a geometric mean were studied to analyze the surface free energy of blend system. For the mechanical and toughening properties of the casting specimens, the critical stress Intensity factor ($K_{IC}$) and impact test were performed. Especially, the impact test was carried out at room and cryogenic temperatures. As a result, specific or polar component of the surface free energy of the blend system was largely influenced on the addition of the PU resulting in increasing the impact strength for the excellent low- temperature performance.

  • PDF

Effects of Sizing Treatment of Carbon Fibers on Mechanical Interfacial Properties of Nylon 6 Matrix Composites (탄소섬유의 사이징처리가 탄소섬유/나일론6 복합재료의 기계적 계면 특성에 미치는 영향)

  • Park, Soo-Jin;Choi, Woong-Ki;Kim, Byung-Joo;Min, Byung-Gak;Bae, Kyong-Min
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.2-6
    • /
    • 2010
  • The sizing treatments of PAN-based carbon fiber surfaces were carried out in order to improve the interfacial adhesion in the carbon fibers/nylon6 composite system. The parameter to characterize the wetting performance and surface free energy of the sized fibers were determined by a contact angle method. The mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of sized CFs/nylon6composites were observed by SEM. As the experimental results, it was observed that silane-based sizing treated carbon fibers showed higher surface free energies than other sizing treatments. In particular, the KIC of the sizing-treated carbon fibers reinforced composites showed higher values than those of untreated carbon fibers-reinforced composites. This result indicated that the increase in the surface free energy of the fibers leads to the improvement of the mechanical interfacial properties of carbon fibers/nylon6 composites.

INFLUENCE OF CAPILLARITY AND ELASTICITY ON MICRO-CONTACTS

  • Zheng, J.;Streator, J.L.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.65-66
    • /
    • 2002
  • One aspect of the stiction problem may be explained by the action of capillary forces in conjunction with surface elasticity. In the present work, the interaction between two elastic half-spaces separated by a small liquid bridge is investigated. By minimizing the total free energy stored in the interface (including elastic energy and surface energy), the equilibrium interface geometry is determined analytically in the case where there is no solid-solid contact. A non-dimensional number, $N_c=299\frac{{\gamma}^2_{LA}cos^2{\theta}V_o}{E^{'2}H^5}$ is found to govern the structure stability. When $N_c{\ge}1$, the two surfaces jump into solid-solid contact and, once this occurs, the contact area will continue to expand until the two surfaces are in full contact.

  • PDF

Determination of Tool Orientation in 5-Axis Milling Using Potential Energy Method (포텐셜 에너지를 이용한 5축 NC 밀링의 공구방향 결정)

  • Cho, Inhaeng;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.161-167
    • /
    • 1996
  • In five-axis milling, optimal CL-data (cutter location data) should be generated to have advantages over three-axis milling in terms of accuracy and efficiency. This paper presents an algorithm for generating collision-free CL-data for five-axis milling using potential energy method. By virtually charging the cutter and part surfaces with static electricity, global collision as wells as local interference is eliminated. Additionally, machining efficiency is improved by minimizing the curvature difference between the part surface and tool swept surface at a CC-point (cutter contact point) simultaneously.

  • PDF

Equilibrium Thermodynamics of Chemical Reaction Coupled with Other Interfacial Reactions Such as Charge Transfer by Electron, Colligative Dissolution and Fine Dispersion: A Focus on Distinction between Chemical and Electrochemical Equilibria

  • Pyun, Su-Il;Lee, Sung-Jai;Kim, Ju-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.227-241
    • /
    • 2008
  • This article involves a unified treatment of equilibrium thermodynamics of the chemical reaction coupled with other interfacial (phase boundary) reactions. The modified (restrictive) chemical potential ${\mu}_k^+$, such as electrochemical potential, hydrostatic-chemical (mechanochemical) potential (exceptionally in the presence of the pressure difference) and surface-chemical potential, was first introduced under the isothermal and isobaric conditions. This article then enlightened the equilibrium conditions in case where the release of chemical energy is counterbalanced by the supply of electrical energy, by the supply of hydrostatic work (exceptionally in the presence of ${\Delta}p$), and finally by the release of surface energy, respectively, at constant temperature T and pressure p in terms of the modified chemical potential ${\mu}_k^+$. Finally, this paper focussed on the difference between chemical and electrochemical equilibria based upon the fundamentals of the isothermal and isobaric equilibrium conditions described above.

Modification of Wind Generated Coastal Circulation Model (풍성연안순환모델의 수정)

  • Lee, J. W.;Shin, S. H.;Kim, J. Y.;Yang, S. Y.
    • Journal of Korean Port Research
    • /
    • v.9 no.2
    • /
    • pp.25-38
    • /
    • 1995
  • The wind generated circulation model describes the phenomenon based on the following physical assumptions: a) As the horizontal dimension of the flow domain is several orders of magnitude larger than vertical dimension, nearly horizontal flow is realistic. b) The time taken for circulation to develop may effect on the flow domain of the earth's rotation, the contribution of the Coriolis force. c) A flow domain of large dimension results in quite large Reynolds number and the Reynolds stresses are approximated by the turbulent mean velocity gradient. d) The circulation is forced by the shear stresses on the water surface exercised by the wind. Modification made to the depth average approximation of the convective terms and the bed shear stress terms by adopting a certain distribution of current over the depth and laboratory measurements for the bed shear expression. Modification circulation patterns, energy evolution and surface profile gave the significant differences comparing with the classical model results. The modified model results in higher free surface gradients balancing both the free surface shear and the bed shear and consequently to higher surface profiles along the coast.

  • PDF

Effects of Impact Velocity on Crystallization and Activation Energy of Cu-based Bulk Metallic Glasses in Kinetic Spray Coating (저온 분사 코팅 공정에서 충돌속도에 따른 CuNiTiZr 벌크 비정질 소재의 활성화 에너지와 결정화 거동 분석)

  • Yoon, Sang-Hoon;Bae, Gyu-Yeol;Kim, Jung-Hwan;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, nanocrystallization of CuNiTiZr bulk metallic glass (BMG) subjecting to a kinetic spraying, dependent on impact velocity, was investigated by numerical and experimental approaches. The crystallization fraction and nucleation activation energy of initial feedstock and as-deposited coating were estimated by DSC and Kissinger method, respectively. The results of numerical modeling and experiment showed that the crystalline fraction and nucleation activation energy in BMG coatings were depended on kinetic energy of incident particle. Upon impact, the conversion of particle kinetic energy leads to not only decreasing free energy barrier but also increasing the driving force for an amorphous to crystalline phase transformation. The nanocrystallization of BMGs is associated with the strain energy delivered by a plastic deformation with a high strain rate.

Characteristics of Polymer irradiated by Low energy Ion Beam

  • sung Han;Yoon, Ki-Hyun;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.109-109
    • /
    • 1999
  • Recently, low energy ion beam irradiation has been adopted for surface modification. Low energy ion beam irradiation has many advantages in polymer engineering such as weak damage, good adhesion, noticeably-enhanced wettability(less than 15 degree), good reproducibility and so on. In this experiment, chemical reactions between free radicals and environment gas species have been investigated using angle-resolved XPS and TRIM code. In the case of low ion beam energy (around 1 keV), energy loss in polymer is mainly originated from atomic collisions instead of electronic interference. Atomic collisions could generated displaced atoms and free radicals. Cold cathode-ion source equipped with 5cm convex grid was used in an O2 environment. Base and working pressure were 5$\times$10-6 and 2.3$\times$10-4 Torr. Flow rates of argon and oxygen were fixed at 1.2 and 8 sccm. target materials are polyethylene polyvinyidenefluoride and polytetrafluoroethylene.

  • PDF