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Abstract — A nonlinear sloshing problem is numerically simulated. During excessive sloshing the sloshing-
induced impact load can cause a critical damage on the tank structure. A three-dimensional free-surface flow
in a tank is formulated in the scope of potential flow theory. The exact nonlinear free-surface conditicn is sat-
isfied numerically. A finite-element method based on Hamiltons principle is employed as a numerical scheme.
The problem is treated as an initial-value problem. The computations are made through an iterative method at

each time step. The hydrodynamic loading on the pillar in the tank is computed.

Keywords: Nonlinear sloshing problem(H)%13 <2 & A)), Nonlinear Free-surface flow(d] X3 X}
¥y} FA)), Finite element method(+-3t2.4%), Wave impact(@# 525)

1. Introduction

Sloshing is a phenomenon of great engineering importance in
the fields of naval architecture, ocean engineering and civil
engineering. A severe sloshing can occur in a large oil storage
tank, a reservoir and a fuel tank. An excessive sloshing motion
in LNG tanker can rupture the pipeline in a tank and tank itself.
The results of several research programs investigating sloshing
in Liquefied Natural Gas (LNG) Carriers are presented in Abram-
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son et al. (1974). In the study, the history of slosh-related prob-
lems in LNG carriers is discussed including a list of recorded
tank damages for LNG sloshing when the filling height is low
and high relative to the tank length. In both cases impact loads
and the induced extremely high pressures have been reported.
There have been a considerable number of investigations on a
sloshing problem. For the case of small amplitude excited
motions, Solaas & Faltinsen (1997) adopted a perturbation the-
ory. For large amplitude excited motions, Jones & Hulme
(1987), Faltinsen (1974, 1978), Okamoto & Kawahara (1990),
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Chen et al. (1996), Armenio & La Rocca (1996) used various
numerical methods for a two dimensional problem, Huang &
Hsiung (1996) used a shallow water equation. Wu et al. (1996)
simulated sloshing in a 3D tank using finite element method for
a potential flow model. Ferrant & Le Touze (2001) applied an
inviscid pseudo-spectral model to predict 3D sloshing. Ushijima
(1998) used an Arbitrary Lagrangian-Eulerian method on bound-
ary-fitted grids to analyse viscous and swirling effects in a 3D
cylindrical tank. Wu et al. (2001) derived an analytical solution
for a sloshing problem in a rectangular tank including viscosity.

Especially at a low filling rate (approximately 5-20%) from
experimental observations of Verhagen & Wijngaarden (1965),
Vander Bosch & Vugts (1966), Chester (1968), Chester & Bones
(1968), and Adee & Caglayan (1982), the wave elevation in a
tank has the same magnitude as that of the water depth in vicin-
ity of resonant frequencies. In addition to that, a very steep
wave front like a hydraulic jump has been observed in experi-
ments. The bore traveled back and forth between the tank walls.
This introduces difficulties in establishing a stable numerical
scheme and in capturing highly nonlinear free surface phenom-
ena, i.e., the discontinuous hydraulic jump. When the waves are
overturning and hitting the water surface, air bubbles may be
present in the fluid. In this case, a direct numerical solution
based on potential flow made with the nonlinear free surface
conditions would break down. Another difficulties such as
hydroelasticity will also occur when the water impact against
the wall and the top of the tank.

In order to overcome these difficulties, we employed a finite
element formulation based on Hamiltons variational principle,
which provides a stable numerical solution. This approach has
been already applied to the nonlinear free surface problems suc-
cessfully (Bai er al., 1989, 1994, 1995, 2002). A preliminary
result of the present numerical method was reported in Bai et al.
(2002). In the present study, we introduced the diffusive damp-

Fig. 1. Coordinate system.

ing term to make the steep bore smooth. Our numerical model is
an open-type tank without a roof. Main focus is made on the pre-
diction of the impact force on the pillar located in the middle of

the tank by the bore induced by a large amplitude sway motion.

2. MATHEMATICAL FORMULATION

The Cartesian coordinate system is adopted. Oxyz is the coor-
dinate system fixed on the tank with Oz opposing the direction
of gravity and z=0 coincides the undisturbed free surface. The
tank is subjected to a sway motion with amplitude A and fre-
quency .

It is assumed that the fluid is inviscid, incompressible and its
motion is irrotational. So the velocity potential can be defined as

uG 0 = Vo, (1

where % = (x, y,z) and ¢ is the velocity potential. From the con-

tinuity condition we obtain the Laplace equation

V(%) =0 in fluid domain D )
The boundary condition on the body boundary (Ss) is

0,=0 on Ss 3)

where the vector, 7 = (n,, n,n.) , denotes the outward unit nor-
mal vector on the boundaries. The conditions on the free sur-
face, i.e. z=C(x, y, 1), can be given by the kinematic and dynamic

boundary conditions as follows.

¢ = o 4
= _Lvep_pr_P_du

o, =—5Vdl —gC—p S &)

n,=1/J1+5+C (6)

Here g and p denote the gravitational acceleration and the
density of fluid, respectively. The pressure p=p(x, y, 1) is taken
zero unless a non-zero pressure distribution is specified. The
displacement of the tank is given as xz=A cos ¢. Then the
velocity of the tank is u=dxs/dt = —Awsinwt. The resonant fre-
quency ® is obtained from the dispersion relation, i.e., w’=gk
tanhkh. It is interesting that the last term in Equation (5)
behaves like a pressure. The fluid motion is assumed to be at

rest initially. Therefore the initial condition may be given as
0=0=0 at =0 9

The depth of water is 7 and the tank width is B. The wall
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boundary conditions are given as follows.

z=-h
y=+B2 and x==xL/2

9.=0 on ®

®

¢, =0 on

3. VARIATIONAL FORMULATION

We introduce a variational formulation which is equivalent to
the above problem without sway motion. The last term in Eq.
(5) induced by sway motion can be replaced by pressure term.
Let the gravitational acceleration term, g, be unity. First we

define the variational functional, J and the Lagrangian L as

J= | La (10)

L= [ otas3ff_ sCds-3f[[ \vefav (11

where S; is the projection of Sr on Oxy plane and #* is the final
time. Taking the variations on J first with respect to £, we can
obtain & J; as

87c= [ af [, (08¢-gt8C-Jvorec us|

=[], 1630110851t = [ (0 31v0F + JoLas]
(12)

Next the variations on J with respect to ¢, i.e., 8J, can be
:obtained as

8J, = J;dr[”g} C,S(de—”_[D Vo V&bdv}

= [, (e Jaas ], 20 o]

Here 8J=08J:+06J,. Eq. (12) means that the stationary condition

13)

on J for the variation with respect to { recovers the dynamic
free surface condition in each time and that the wave elevation
at =0, +* should be specified as the constraints. Eq. (13) shows
that the stationary condition on J for the variation of ¢ recovers
the kinematic condition on Sr and the governing equation. The
above variational form is previously given by Miles (1977) and
is slightly different from that given by Luke (1967). In the
present variational formulation the wave elevation { assumed to
be known at =0, r* whereas Luke assumed the potential ¢ to be
known at both initial and final times additionally. The present
functional has an advantage over the original Luke’s variational
functional in treating the nonlinear free surface boundary con-

ditions.

AT
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4. FINITE-ELEMENT DISCRETIZATION

In the original initial/boundary-value problem, the admissi-
ble function should be twice continuously differentiable. But in
the above variational method, it is sufficient that the admissible
trial functions have the square integrable properties of the func-
tion ¢ and its first derivatives in space. This fact enables us to
seek an approximate solution in a wider class in the variational
method. As the first step in the numerical procedure, the fluid
domain is to discretize into finite number of finite elements. In
this study, the finite elements are generated such that projec-
tions of x and y coordinates on the horizontal plane are fixed but
the other coordinate, i.e. the z-axis, is allowed to move verti-
cally in time. This restriction makes the regridding and compu-
tation considerably simple. But, it is not always necessary to
impose this restriction in general. The trial basis is denoted by
{Ni}isi,.v and { is approximated by the span of the bases,
{Ni}iz1,.v on Sk which is also continuous and piecewise differ-
entiable on S Then the potential function and the wave eleva-

tion can be represented as

0(x,,2,1) = 0N (%, 3, 2; C) (14)

Sy, 1) = L(OM(x, y) 15)
where

M(x,y) = Ni(x,3,2; O)l, .ok =1,...,Nr (16)

Einstein’s summation convention for the repeated indices is
used here. Nr is the number of nodal point on Sr and i is the
nodal number of the basis function N; of which the node coin-
cides with that of the free surface node k.. It should be noted
that the basis function, {N;}1, v, is dependent on the free sur-
face shape, z =, but its restriction on Sr is the function of (x, y)
and independent of {. The special property of {Mi}i1. n is
resulted from the finite-element subdivision employed here. Once
the trial function is approximated by using the above basis func-

tion, the Lagrangian, L, for these trial solutions are obtained as

L= 0,Tt=50K,0- 386, a7
T,=| L MMdS (18a)
Py=| L’ MMdS (18b)
K, = m’D VN, VN4V (18¢)

The tensors, Ky;, Pi;are the kinetic and potential energy ten-

sor and 7}, is a tensors obtained from the free surface integral,
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which can be interpreted as a tensor related to the transfer rate
between these two energies. It is of interest to note that in Eq.
(18), Ty=Py. The stationary condition on J=_[Ldt gives the fol-

lowing Euler-Lagrange equation.

TkIC/ = Kix /q)i (19)
. 1, dK,

Ty0, = — Eq"'a—ch”_gp‘fc' for k=1,..., N¢ (20)

K ;= 0, i#i ey

Here Eq. (19) and Eq. (20) are the nonlinear ordinary differen-
equations for {4;};s;, which is the constraints for the above two
equations. It can be easily shown that the solution of the above

discretized problem satisfies the conservation of mass and total

energy, i.e.
%@P“Q) =0 (22)
S0k +TLPL)=0 o

This property of the conservations is independent of the ten-

sor Ty if it satisfies

;Tk, = ;ij 24

It should be also pointed out that the direct use of Eq. (20)
leads to some difficulty in the computations. This difficulty
arises from the first term in the right-hand side which is the
derivative of the kinetic energy tensor with respect to the wave
elevation. We have avoided this difficulty by utilizing the fact
that Eq. (20) is equivalent to the condition of vanishing of the
right-hand side in Eq. (12). In Eq. (12), 8 can be regarded as

test functions on Sk Then Eq. (20) can be given as

Tb =[] Mo.Las—3[[ MiVaras P&, (25)

3¢ can also be regarded as test functions on Sr in Eq. (13).

Therefore Eq. (21) can be given as

1. = [ Mo/nds 26)

Consequently, the Laplace equation in Eq. (21) is no more
than a constraint. In order to make the first derivative terms of ¢
written as terms on the free surface, we utilized the same rela-

tions as Zakharov (1968). Then our system becomes Hamilto-

nian.
0.5, 3,2,0) = 0.(x,3.C(x, v, 0,0) + 0., 27
¢x(-x9y’ Z, t) = ¢x(xv Y, C(x3 Y, t)v t) +¢:Cx (28)

0u(x,7,2,1) = 6,(x,5,5(x, 7,0, )+ .8, (29)

Using above relation, we can rewrite Eq. (25) as

b= 3] M (2490 VL VoVt nl GO)

where V, = (8%’ a%) and n=1/J1+§+C .

If the integrals in Eq. (20) and Eq. (30) and the integrals in
Eq. (19) and Eq. (26) are evaluated exactly, they are equivalent.
However, in the present computation these integrals are calcu-
lated by integral quadrature rules. Therefore, the conservation of
energy may not be satisfied exactly due to the error caused by

the numerical integration.

5. NUMERICAL INSTABILITY

The potential theory does not have any mechanism for energy
dissipation inside a tank. This means that a steady-state solu-
tion may be difficult to obtain when a forced harmonic oscilla-
tion of the tank is imposed in the vicinity of the natural modes.
In model tests by Faltinsen (1974), the fluid motion was observed
to oscillate finally with the same period as the forced oscilla-
tion. This implies that the damping is present in reality. To sim-
ulate the effect of viscous damping in the potential theory
model, an artificial damping term may be introduced. For this
reason, Faltinsen (1978) introduced the artificial damping term

on the dynamic free surface condition.

0,= -3V ol ~g-E-po (33)

5~
This term helps the wave motion become steady oscillatory.
However, that artificial damping can not represent the real phys-
ical viscous damping. In addition to that, it has a tendency to
make whole system damped out.
As an alternative damping mechanism to prevent from break-
ing, we introduced the diffusive damping terms in the free sur-

face conditions as follows.

(= i¢n+quC (34)

_ Yoer_ ot P, v?
6, =—5IVol'-g{-5-uv.0 (35)

The last terms in the right-hand side in Eq. (34) and Eq. (35)
are the diffusive terms. An introduction of these terms also
plays a role of an artificial diffusion on the free surface. When
the other numerical schemes experience the steep wave like a

bore, these terms will prevent the wave from steepening. A brief
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background of adopting these diffusive terms is given in Appen-
dix. The damping coefficient 1 depends on the size of grid, inte-
gration time interval and steepness of bore. It is difficult to take
accurate value of the damping coefficient. Therefore the appro-

priate damping coefficient is taken by trial and error.

6. TIME INTEGRATION ON THE FREE
SURFACE

Once we discretize the computational domain into a number
of finite elements and perform integrations in term of three
space variables, we obtain a set of ordinary differential equa-

tions in matrix form given as follows.

Tyl = —nC5 G+ Tk,.il: ,- (36)

7,0 = -HC+53C(0, )=gPy & 37

K,0,=0 (38)
The coefficients are defined as

cy=|f VN, V.NdS (39)

=] VN, V.NdS (40)

Cut0.0)= [[ [ ni(P+v.0-v.0 )V Vialis @)

It should be pointed out that Eq. (38) can be interpreted as a

. constraint to Eq. (36) and Eq. (37). Eq. (38) is obtained from

the boundary value problem with an essential condition

(Dirichlet type) on free surface and a natural condition (Neu-
mann type) on the body surface.

In the solution procedure, the constraint, i.e., Eq. (38) is first

Free Oscillation Test
Analytic Solution
Present Mathod
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Fig. 3. Energy conservation.

solved by the GMRES (Generalized Minimal RESidual, Saad &
Schultz, 1986) algorithm. Then the matrix T is inverted by the
same method. Here the other matrices, which are dependent on
the free surface shape, are treated as known va.ues from the pre-
vious time step. The final form in Eq. (36) and Eq. (37) is
solved by the fourth-order Runge Kutta method.

7. RESULTS AND DISCUSSION

Before we made computations for the sloshing problem in
the tank, a series of tests was conducted for two-dimensional
free oscillations. The computed result for the conservation of
energy in the case of two-dimensional free oscillations is given
in Fig. 2 and Fig. 3.

In the computations the length of tank is taken to be 10 m
with the water depth & being 1 m. Initial wave height is taken as
1/1000 h. Time integration step is 1/50 second. The number of
elements in horizontal and the vertical directions are 40, 15,
respectively. This scheme conserves energy with a good accu-
racy and agrees well with the analytic solution.

For the sloshing problem in a tank with a pi-lar in the middle
of the tank, the computations are made for the conditions given

P® @ D
0.75 7«{2 & 7o 2 P P @ 7
\ _l(? b & ) I & N IS
o @ O ® & Q
0.5 — q, L ¢ Py o ®
@
— @ © & & & o © () &
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’ ¢ ® & o P o
o — ® P & & o)
I
= o J 4’ & d P b & & L9
T ] b
028 — 4 I )| & 4 L 0 i !
1 o b b )| 1 4 & & )
- & b9 LT ? b o I & !
b
0.75 — ¢ & b ¢ )i 4 ¢ & i
&
. && ¢S PP bP o é
’ 3 & s y &% D2
1.25
! [ ! I T I 1 T I T ]
o 25 50 75 100 125 150
T

Free oscillation test.

Table 1. Computational Cases for sloshing tank with a pillar

L B h R A [ At
40 m 10 m I m 1.5m 1.5m 1.0 0.0511
40 m 10 m 2m 1.5m 1.5m 1.5 0.0363
40 m 10m 3m 1.5m 1.5m 2 0.0149
40 m 10m 4m 1.5m 1.5m 2 0.0130
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Fig. 4. Impact force on the pillar versus time: A=1 m.
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Fig. 7. Impact force on the pillar versus time: h=4 m.

Fig. 9. Wave profile for 2 m depth at 1=51.6 sec.

in Table 1. The number of finite elements is taken as 60, 10 and

7 along the length, the width and the depth, respectively. Time

integration step is 0.025 sec in average. Total number of ele-

ments is 4200. It takes about 9 sec to calculate one time step by

PC with 2 GHz Pentium processor.
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Fig. 11. Wave profile for 4 m depth at +=37.1 sec.

Fig. 4 through Fig. 7 shows the time history of the impact

' forces. Force acting on the pillar is non-dimensionalized by 1/
2pU”S. p is the density of the fluid. The velocity U is the criti-
cal speed of the bore which equals /g% in linear shallow-water
theory. S is the projected area namely hD. In the four different
depth cases, it can be observed that the nondimensionalized
maximum impact load shows the similar value. The maximum
values of non-dimensionalized impact loads lies between 1.0
and 1.4 for the present computed cases. Therefore it seems that
the maximum impact load is proportional to the depth squared.

Fig. 8 through Fig. 11 show the wave profiles at the instance
of the maximum impact load. Impact loads on the pillar located
in the middle of the tank have maximum value when the wave
crest hits the pillar. The maximum wave height of bore is
observed to be equal to the mean water depth.

So the wave loads increase as the water depth and the height
of the bore increases in the cases of the water depth to the
length of the tank being relatively low.

As concluding remarks, a series of numerical computations
are made for impact load on the pillar in the middle of the shal-
low filling tank. Very steep bores are observed and they pro-

e

duce the maximum impact load on the piller. The maximum

wave load is observed when the wave crest hits the pillar.
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APPENDIX

In the present numerical scheme a numerical filtering by
using 5-point Chebyshev smoothing algorithm is employed to
remove the saw-toothed numerical instability in a time domain
analysis. However, there is another difficulty when the com-
puted wave elevation keeps steepening and then the computa-
tion can not be continued due to an evident wave breaking. This
wave breaking may be real physical phenomena. However, the
viscosity which we neglected may play a role of retarding the
wave-steepening. Therefore one can compute the steep wave
more closely before breaking by introducing a diffusive term in
the numerical scheme even though this is not actual simulation
of the viscosity.

With this end in mind, we can rewrite the free surface condi-

tions in a form as follows.

(A-D)
(A-2)

C'+C‘(¢’ Q)CX+F(¢7 C) =0
¢/+ Cz(q)v C)¢x+G(¢s C.u) =0

If we introduce the diffusive damping term to the RHS (right

hand side) as follows.

E+Ci0, D)+ F(9,0) = puk..
0.+ Ca(9,0)0,+G(9,0) = no.,

(A-3)
(A-4)

where [ is a damping factor. These damping terms may act like
a viscous diffusion and prevent the wave profiles from break-
ing. It is of interest to note that these forms are very similar to

the well-known Burgers equation.
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