DOI QR코드

DOI QR Code

Effects of Impact Velocity on Crystallization and Activation Energy of Cu-based Bulk Metallic Glasses in Kinetic Spray Coating

저온 분사 코팅 공정에서 충돌속도에 따른 CuNiTiZr 벌크 비정질 소재의 활성화 에너지와 결정화 거동 분석

  • Yoon, Sang-Hoon (Kinetic Spray Coating Laboratory, Division of Materials Science & Engineering, College of Engineering, Hanyang University) ;
  • Bae, Gyu-Yeol (Kinetic Spray Coating Laboratory, Division of Materials Science & Engineering, College of Engineering, Hanyang University) ;
  • Kim, Jung-Hwan (Kinetic Spray Coating Laboratory, Division of Materials Science & Engineering, College of Engineering, Hanyang University) ;
  • Lee, Chang-Hee (Kinetic Spray Coating Laboratory, Division of Materials Science & Engineering, College of Engineering, Hanyang University)
  • 윤상훈 (한양대학교 신소재공학부 저온 분사 코팅 연구실) ;
  • 배규열 (한양대학교 신소재공학부 저온 분사 코팅 연구실) ;
  • 김정환 (한양대학교 신소재공학부 저온 분사 코팅 연구실) ;
  • 이창희 (한양대학교 신소재공학부 저온 분사 코팅 연구실)
  • Published : 2008.12.31

Abstract

In this paper, nanocrystallization of CuNiTiZr bulk metallic glass (BMG) subjecting to a kinetic spraying, dependent on impact velocity, was investigated by numerical and experimental approaches. The crystallization fraction and nucleation activation energy of initial feedstock and as-deposited coating were estimated by DSC and Kissinger method, respectively. The results of numerical modeling and experiment showed that the crystalline fraction and nucleation activation energy in BMG coatings were depended on kinetic energy of incident particle. Upon impact, the conversion of particle kinetic energy leads to not only decreasing free energy barrier but also increasing the driving force for an amorphous to crystalline phase transformation. The nanocrystallization of BMGs is associated with the strain energy delivered by a plastic deformation with a high strain rate.

Keywords

References

  1. Thierry Gloriant, J. Non-Crystalline Solids, 316 (2003) 96-103 https://doi.org/10.1016/S0022-3093(02)01941-5
  2. A. L. Greer, Materials Science and Engineering A, 304-306 (2001) 68-72 https://doi.org/10.1016/S0921-5093(00)01449-0
  3. S. H. Yoon, C. H. Lee, H. S. Choi, H. H. Jo, Materials Science & Engineering A, 415 (2006) 45-52 https://doi.org/10.1016/j.msea.2005.08.132
  4. S. H. Yoon, H. J. Kim, C. H. Lee, Surface and Coatings Technology, 200 (2006) 6022-6029 https://doi.org/10.1016/j.surfcoat.2005.09.022
  5. H. E. Kissinger, J. Res. Natl. Bur. Stand, 57 (1956) 217 https://doi.org/10.6028/jres.057.026
  6. J. Wu, H. Fang, S. Yoon, H. Kim, C. Lee, Appl. Surf. Sci., 252 (2005) 1368 https://doi.org/10.1016/j.apsusc.2005.02.108
  7. G. Bae, Y. Xiong, S. Kumar, K. Kang, C. Lee, Acta Mater., 56 (2008) 4858 https://doi.org/10.1016/j.actamat.2008.06.003
  8. T. Schmidt, F. Gärtner, H. Assadi, H. Kreye, Acta Mater., 54 (2006) 729 https://doi.org/10.1016/j.actamat.2005.10.005