• Title/Summary/Keyword: Surface design

Search Result 8,562, Processing Time 0.034 seconds

Multi-Level Response Surface Approximation for Large-Scale Robust Design Optimization Problems (다층분석법을 이용한 대규모 파라미터 설계 최적화)

  • Kim, Young-Jin
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • Robust Design(RD) is a cost-effective methodology to determine the optimal settings of control factors that make a product performance insensitive to the influence of noise factors. To better facilitate the robust design optimization, a dual response surface approach, which models both the process mean and standard deviation as separate response surfaces, has been successfully accepted by researchers and practitioners. However, the construction of response surface approximations has been limited to problems with only a few variables, mainly due to an excessive number of experimental runs necessary to fit sufficiently accurate models. In this regard, an innovative response surface approach has been proposed to investigate robust design optimization problems with larger number of variables. Response surfaces for process mean and standard deviation are partitioned and estimated based on the multi-level approximation method, which may reduce the number of experimental runs necessary for fitting response surface models to a great extent. The applicability and usefulness of proposed approach have been demonstrated through an illustrative example.

Surface roughness prediction with a full factorial design in turning (완전요인계획에 의한 선삭가공시 표면거칠기 예측)

  • Yang, Seung-Han;Lee, Young-Moon;Bae, Byong-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.133-140
    • /
    • 2002
  • The object of this paper is to predict the surface roughness using the experiment equation of surface roughness, which is developed with a full factorial design in turning. $3^3$ full factorial design has been used to study main and interaction effects of main cutting parameters such as cutting speed, feed rate, and depth of cut, on surface roughness. For prediction of surface roughness, the arithmetic average (Ra) is used, and stepwise regression has been used to check the significance of all effects of cutting parameters. Using the result of these, the experimental equation of surface roughness, which consists of significant effects of cutting parameters, has been developed. The coefficient of determination of this equation is 0.9908. And the prediction ability of this equation was verified by additional experiments. The result of that, the coefficient of determination is 0.9718.

  • PDF

Addendum Surface Modeling in Draw Die Design for Stamping Automotive Panels (자동차 프레스 패널 성형을 위한 드로 금형의 어덴덤 곡면 모델링)

  • Chung, Yunchan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1018-1024
    • /
    • 2013
  • In the process of draw die design for stamping automotive press panels, the addendum surfaces generated in metal forming simulation software cannot be used in downstream processes such as machining and making draw dies because simulation tools use simple discrete models for the surface geometry. The downstream processes require more precise and continuous geometric models such as NURBS surfaces. Generally, automotive die engineers manually regenerate the addendum surface geometry using the discrete model. This paper presents an automated geometric modeling process for generating addendum surfaces using draft surface models. The design parameters of the section curve for the addendum surfaces are extracted automatically from the draft geometry. Using the extracted design parameters, smooth addendum surfaces are generated automatically as NURBS surfaces. The generated surfaces are $G^1$ continuous with the part surface and the binder surface, and can be used in downstream processes.

Study on surface processing design of aluminum alloy materials that is applied to IT and electronics (IT 및 전자제품에 적용되는 알루미늄 합금소재의 표면처리디자인에 관한 연구)

  • Han, Jisu;Kim, Pureum;Kim, Hyun-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.212-219
    • /
    • 2017
  • To become a person that is suitable to the 'High-Touch' generation where emotion takes over, we can focus on 6 skill including design, story, harmony, empathy, play, and meaning. Among these skills, harmony with design was chosen as the most important skill. Design can be seen as the basic element of all business, but it will be difficult to match the flow of the future Sensibility and intuitive generation with just the modern design that has been made based on reasonable and objective information and knowledge. This study suggests system and standardization of Sensibility surface processing design that satisfies great quality, attractive quality and Sensibility quality by applying surface processing design of product and Sensibility cognitive factors felt by the consumer by setting differentiated strategy and CMF (Color, Material, Finishing) understanding along with the importance of design materials in primary aspect. By considering the efficacy/characteristic of new surface processing characteristic/differentiation/possibility of implementation according to setting direction of differentiated CMF strategy per type of parts applied to the product, visual surface processing sample was implemented. Through this, it is expected that practical communication connected tool and Sensibility surface processing design's strategic access framework can be applied by understanding and sharing comprehensive elements such as target product, part type, applied material, applied surface processing, surface color, surface texture, and implementing feeling to environments such as designers, CMF designers, surface processing experts, and engineers in IT, electronics, and other areas. when developing a product.

Optimization of Chassis Frame by Using D-Optimal Response Surface Model (D-Optimal 반응표면모델에 의한 섀시 프레임 최적설치)

  • Lee, Gwang-Gi;Gu, Ja-Gyeom;Lee, Tae-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.894-900
    • /
    • 2000
  • Optimization of chassis frame is performed according to the minimization of eleven responses representing one total frame weight, three natural frequencies and seven strength limits of chassis frame that are analyzed by using each response surface model from D-optimal design of experiments. After each response surface model is constructed form D-optimal design and random orthogonal array, the main effect and sensitivity analyses are successfully carried out by using this approximated regression model and the optimal solutions are obtained by using a nonlinear programming method. The response surface models and the optimization algorithms are used together to obtain the optimal design of chassis frame. The eleven-polynomial response surface models of the thirteen frame members (design factors) are constructed by using D-optimal Design and the multi-disciplinary design optimization is also performed by applying dual response analysis.

Design Optimization of Bolted Connection with Wood Laminated Composite Beams Subjected to Distributed Loads (분포하중을 받는 목재 적층복합재 빔의 볼트 체결 최적화 설계)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.292-298
    • /
    • 2017
  • Numerical analysis for various design parameters should be preceded by optimal design of composite materials. Numerous studies have been conducted on the bolting of interconnecting beams. In this study, the response surface method was applied to optimize the design of bolted joints connected by laminated wood composite beams. The response surface was created by combining the FEA code for composite analysis and the algorithm for forming the response surface. Optimization on this response surface was performed with a genetic algorithm to derive the results. The determination of the optimum bolt-hole position for the connection of composite beams is an optimization problem. Tsai-Wu composite failure index, maximum deflection, and simple von Mises stress are set as the objective functions. It has been proved that the design results of the optimized bolt-hole are superior to the design performance of the existing conventional bolt-hole position.

Interior Surface Design by Fractal Pattern (프랙탈 패턴에 의한 인테리어 표면디자인)

  • Kim, Joo-Mi
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2008.05a
    • /
    • pp.36-38
    • /
    • 2008
  • The purpose of the study is to propose a new surface design concepts within fractal pattern. In this study, I am offering the fractal concepts drawn from science, as a new anchoring point for surface design. Fractal Patterns are generated by transforming a seed slab into a number of constituent elements through fractal operations of rotation, scaling and linear transformations. These elements are bound together as a second generation seed shape which is reiterated according to the same transformations. This process continues for as many generations as desired. In conclusion, this study places a great emphasis on the natural pattern order to the surface generation, which I hope will contribute to generating a number of creative possibilities for interior design.

  • PDF

Brassiere Pattern Design Using the 3D Information - Application of Ruled Surface- (3차원 정보가 반영된 브래지어 패턴 설계 -Ruled surface의 활용-)

  • 이예진;홍경희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.11
    • /
    • pp.1536-1543
    • /
    • 2004
  • Garment is made by a 2D pattern and should be fitted to a human body which has 3D characteristics. Therefore, to design a pattern more effectively, the use of 3D information of a human body and the investigation of relationship between the 3D garment and 2D pattern are necessary. In this work, ruled surface method was used to reflect the 3D information of a human body for a pattern design. The images of the brassiere line on the woman's dress form were captured by phase-shifting projection moire system and the 3D information on the design line was obtained. 2D patterns on the various parts of the brassiere were developed directly from the 3D data by the ruled surface method. In addition, design line, the area and the amount of dart were quantified. And then we verify the appropriateness of the ruled surface method to the 2D pattern development by measuring the distribution of the space between women's figure and segmented clothing item. It was found that the ruled surface method is useful to transform the 3D design line to the 2D pattern, if we followed the steps suggested in this paper.

A Feature-based Approach to Compound Surface Design (특징형상을 이용한 복합곡면의 설계)

  • Jeong, Jaehun;Kim, Kwangsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.112-122
    • /
    • 1995
  • While many surfaces such as automobile outer panels, ship hulls and airfoils are characterized by their smooth, free-form shapes, a far larger class of functional surfaces are characterized by highly irregular, multi-featured shapes consisting of pockets, channels, ribs, etc. In constaract to the design of aesthetic, free-form surfaces, functional surface design can perhaps best be viewed as a process of assembling a collection of known component surfaces to form a single compound surface. In this paper, we presents a feature-based functional surface modeling method. A single feature involves a secondary surface, which we must join to a primary surface with a smooth transition between two boundary courves. Through recursive blending of a secondary surface with the primary surface, the mullti-featured surface is represented. After constructing a compound surface, we generate the Z-map for NC machining of the surface. Offsetting the Z-map using the inverse offsetting technique, we get CL tool paths with out gouging.

  • PDF

Experimental Investigation on Separated Flows of Axial Flow Stator and Diagonal Flow Rotor

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki;Jin, Yingzi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.223-231
    • /
    • 2009
  • Experimental investigations were conducted for the internal flows of the axial flow stator and diagonal flow rotor. Corner separation near the hub surface and the suction surface of stator blade are mainly focused on. For the design flow rate, the values of the axial velocity and the total pressure at stator outlet decrease between near the suction surface and near the hub surface by the influence of corner wall. For the flow rate of 80-90% of the design flow rate, the corner separation of the stator between the suction surface and the hub surface is observed, which becomes widely spread for 80% of the design flow rate. At rotor outlet for 81% of the design flow rate, the low axial velocity region grows between near the suction surface of rotor and the casing surface because of the tip leakage flow of the rotor.