• 제목/요약/키워드: Surface concentration

검색결과 6,117건 처리시간 0.038초

오존 처리가 폴리에틸렌 필름의 염색성에 미치는 영향 (Effect of Ozone Treatment on Dyeability of Polyethylene Film)

  • 박수진;신준식;김학용;이덕래
    • 폴리머
    • /
    • 제27권2호
    • /
    • pp.98-105
    • /
    • 2003
  • 오존 처리된 저밀도 폴리에틸렌 (LDPE) 필름의 표면 작용기와 표면 자유에너지에 대하여 고찰하였다. 오존 표면처리 조건을 각각 처리시간, 오존 생산량, 그리고 오존의 농도로 변화시켰으며, 오존 처리된 LDPE 필름 표면에 도입된 작용기는 FTIR-ATR과 XPS 분석을 통하여 알아보았다 LDPE 필름의 표면 자유에너지는 접촉각 측정을 통하여 고찰하였다. 실험결과, 오존으로 표면처리된 LDPE 픽름은 표면에 형성된 산소 함유 작용기로 인하여 물 접촉각이 15$^{\circ}$ 정도 감소하였고, 그 결과 표면 자유에너지의 증가및 $O_{IS}$ / $C_{IS}$ 의 증가를 확인할 수 있었다. 또한, 표면 자유에너지와 산소 함유 작용기는 오존 표면처리 시간과 오존의 농도에 비례하는 관계를 보인 반면, 오존의 총 발생량의 변화는 표면 자유에너지 및 $O_{IS}$ / $C_{IS}$ 의 증가와는 무관하였다. Kubelka-Munk 식을 이용한 염색성 측정 결과로부터, 오존 표면처리는 LDPE 필름 표면에 산소 작용기를 형성시키는데 중요한 역할을 하는 것을 확인할 수 있었으며, 최종 염기성 염료에의 염색성을 향상시켰다.

토양 속 박테리아가 지하매설 X65 배관의 미생물 부식 거동에 미치는 영향 (Effect of Bacteria in Soil on Microbiologically Influenced Corrosion Behavior of Underground X65 Pipeline)

  • 최병학;한성희;김대현;김우식;김철만;최광수
    • 한국재료학회지
    • /
    • 제32권3호
    • /
    • pp.168-179
    • /
    • 2022
  • Microbiologically Influenced Corrosion (MIC) occurring in underground buried pipes of API 5L X65 steel was investigated. MIC is a corrosion phenomenon caused by microorganisms in soil; it affects steel materials in wet atmosphere. The microstructure and mechanical properties resulting from MIC were analyzed by OM, SEM/EDS, and mapping. Corrosion of pipe cross section was composed of ① surface film, ② iron oxide, and ③ surface/internal microbial corrosive by-product similar to surface corrosion pattern. The surface film is an area where concentrations of C/O components are on average 65 %/16 %; the main components of Fe Oxide were measured and found to be 48Fe-42O. The MIC area is divided into surface and inner areas, where high concentrations of N of 6 %/5 % are detected, respectively, in addition to the C/O component. The high concentration of C/O components observed on pipe surfaces and cross sections is considered to be MIC due to the various bacteria present. It is assumed that this is related to the heat-shrinkable sheet, which is a corrosion-resistant coating layer that becomes the MIC by-product component. The MIC generated on the pipe surface and cross section is inferred to have a high concentration of N components. High concentrations of N components occur frequently on surface and inner regions; these regions were investigated and Na/Mg/Ca basic substances were found to have accumulated as well. Therefore, it is presumed that the corrosion of buried pipes is due to the MIC of the NRB (nitrate reducing bacteria) reaction in the soil.

대구시 고농도 오존 사례일인 경우 대기 오염물질 농도의 일변화 특성 (Characteristics of Diurnal Variation of the Atmospheric Pollutants Concentration in High-Ozone Episode day in Daegu)

  • 손임영;윤일희;김희종
    • 한국환경과학회지
    • /
    • 제11권12호
    • /
    • pp.1253-1259
    • /
    • 2002
  • This study analyzes the surface ozone, NO and $NO_2$ concentration data from 1997 to 1999 in Daegu. It investigates effect on precursor during high-ozone episode days. The high-ozone episode is defined when a daily maximum ozone concentration is higher than 100 ppb(ambient air quality standard of Korea) in at least one station among six air quality monitoring stations. The frequency of episodes is 13 days(33 hours). The frequency is the highest in May and September, and the area with the highest frequency is Nowondong and Manchondong. The average value of daily maximum ozone concentration with high ozone episode is 81.6 ppb, and that of 8-hour average ozone concentration is 58.6 ppb. It means that ozone pollution is continuous and wide-ranging in Daegu. The daily variation of NO, $NO_2$ and $O_3$ in high-ozone episodes are inversely proportional one another. Nowondong an industrial area, is affected by pollutants that are emitted from the primary sources, while Manchondong a residential area, is affected by the advection of $O_3$ or by the primary pollutants like VOCs.

Simultaneous degradation of nitrogenous heterocyclic compounds by catalytic wet-peroxidation process using box-behnken design

  • Gosu, Vijayalakshmi;Arora, Shivali;Subbaramaiah, Verraboina
    • Environmental Engineering Research
    • /
    • 제25권4호
    • /
    • pp.488-497
    • /
    • 2020
  • The present study investigates the feasibility of nitrogenous heterocyclic compounds (NHCs) (Pyridine-Quinoline) degradation by catalytic wet peroxidation (CWPO) in the presence of nanoscale zerovalent iron supported on granular activated carbon (nFe0/GAC) using statistical optimization technique. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the process parameters of CWPO process such as initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of pyridine (Py) and quinolone (Qn) were chosen as the main variables, and total organic carbon (TOC) removal and total Fe leaching were selected as the investigated response. The optimization of process parameters by desirability function showed the ~85% of TOC removal with process condition of initial solution pH 3.5, catalyst dose of 0.55 g/L, hydrogen peroxide concentration of 0.34 mmol, initial concentration of Py 200 mg/L and initial concentration of Qn 200 mg/L. Further, for TOC removal the analysis of variance results of the RSM revealed that all parameter i.e. initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of Py and initial concentration of Qn were highly significant according to the p values (p < 0.05). The quadratic model was found to be the best fit for experimental data. The present study revealed that BBD was reliable and effective for the determination of the optimum conditions for CWPO of NHCs (Py-Qn).

반응성 RF 마그네트론 스퍼터링으로 증착한 AlN 박막의 특성에 질소농도 변화가 미치는 영향 (Effect of nitrogen concentration on the microstructures of AlN thin films fabricated by reactive RF sputtering)

  • 임동기;김병균;정석원;노용한
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.367-367
    • /
    • 2008
  • Aluminum nitride (AlN) thin films have been deposited on Si substrate by using reactive RF magnetron sputtering method in a gas mixture of Ar and $N_2$ at different $N_2$ concentration. It was found that $N_2$ concentration was varied in the range up to 20-100%, highly c-axis oriented film can be obtained at 50% $N_2$ with full width at half maximum (FWHM) $4.5^{\circ}$. Decrease in surface roughness from 7.5 nm to 4.6 nm found to be associated with decrease in grain size, with $N_2$ concentration; however, the AlN film fabricated at 20% $N_2$ exhibited a granular type of structure with non-uniform grains. The absorption peak was observed around 675 $cm^{-1}$ in fourier transform infrared spectroscopy (FTIR). It is concluded that the AlN film deposited at $N_2$ concentration of 50% exhibited the most desirable properties for the application of high-frequency surface acoustic devices.

  • PDF

소금용액에 포함된 글루코오스 농도의 전기화학적 측정 (Electrochemical Determination of Glucose Concentration Contained in Salt Solution)

  • 김영한
    • 한국항만학회지
    • /
    • 제14권4호
    • /
    • pp.475-479
    • /
    • 2000
  • A possibility of the implementation of a quartz crystal sensor to the determination of chemical oxygen demand is examined by checking the electrochemical behavior of the sensor in a glucose solution. Since the surface of a quartz crystal has to be oxidized, a relatively active metal is coated on the surface of a usual 9 MHz AT-cut crystal. The electrochemical behavior is investigated by measuring the changes of current, resonant frequency and resonant resistance while a constant potential is applied. The crystal is installed in a specially designed container, and a quartz crystal analyzer is utilized to measure the frequency and resistance simultaneously. The variations of the measurements are examined at different concentrations of glucose solution, and a proper relation between the concentrations of glucose solution, and a proper relation between the concentration and the measurements is analyzed. As a result, it is found that a linear relation between the concentration of less than 900 ppm and the peak current when a constant potential of -180 mV (SSCE) is applied. The relation can be utilized for the determination of glucose concentration in sea water, and considering a direct relation between gluose concentration and chemical oxygen demand tells a possibility of the measurement of chemical oxygen demand using quartz crystal oscillators.

  • PDF

Surface Modification of Silica Spheres for Copper Removal

  • Kim, Byoung-Ju;Park, Eun-Hye;Kang, Kwang-Sun
    • 대한화학회지
    • /
    • 제60권5호
    • /
    • pp.317-320
    • /
    • 2016
  • Efficient copper removal from water was achieved by using surface modified silica spheres with 3-mercaptopropyltrimethoxysilane (MPTMS) using base catalyst. The surface modification of silica spheres was performed by hydrolysis and condensation reactions of the MPTMS. The characteristic infrared absorption peaks at 2929, 1454, and 1343 cm−1 represent the −CH2 stretching vibration, asymmetric deformation, and deformation, respectively. The absorption peaks at 2580 and 693 cm−1 corresponding the −SH stretching vibration and the C-S stretching vibration indicate the incorporation of MPTMS to the surface of silica spheres. Field emission scanning electron microscope (FESEM) image of the surface modified silica sphere (SMSS) shows nano-particles of MPTMS on the surface of silica spheres. High concentration of copper solution (1000 ppm) was used to test the copper removal efficiency and uptake capacity. The FESEM image of SMSS treated with the copper solution shows large number of copper lumps on the surface of SMSS. The copper concentration drastically decreased with increasing the amount of SMSS. The residual copper concentrations were analyzed using inductively coupled plasma mass spectrometer. The copper removal efficiency and uptake capacity with 1000 ppm of copper solution were 99.99 % and 125 mg/g, respectively.

산소 가스 유량비 변화에 따른 ITO 박막의 전기적 특성에 관한 연구 (A Study on the Electrical Properties of ITO Thin Films with Various Oxygen Gas Flow Rate)

  • 최동훈;금민종;전아람;한전건
    • 한국표면공학회지
    • /
    • 제40권3호
    • /
    • pp.144-148
    • /
    • 2007
  • To prepare the transparent electrode for electronic devices such as flat panel or flexible displays, solar cells, and touch panels; tin doped $In_2O_3$ (ITO) films with low resistivity and a high transparency were fabricated using a facing target sputtering (FTS) system at the various oxygen gas flow rate. The carrier concentration and mobility of ITO films were measured by Hall Effect measurement. And the transmittance was measured using the UV-VIS spectrometer. As a result, we can obtain the ITO thin films prepared at 10% oxygen gas flow ratio, thickness 150 nm with transmittance 85% and resistivity $8.1{\times}10^{-4}{\Omega}cm$ and surface roughness 5.01 nm.

Acid Texturing에 의한 태양전지용 다결정 실리콘 기판의 표면 반사율 감소 (Surface Reflectance Reduction of Multicrystalline Silicon Wafers for Solar Cells by Acid Texturing)

  • 김지선;김범호;이수홍
    • 한국전기전자재료학회논문지
    • /
    • 제21권2호
    • /
    • pp.99-103
    • /
    • 2008
  • To improve efficiency of solar cells, it is important to make a light trapping structure to reduce surface reflectance for increasing absorption of sun light within the solar cells. One of the promising methods that can reduce surface reflectance is isotropic texturing with acid solution based on hydrofluoric acid(HF), nitric acid($HNO_3$), and organic additives. Anisotropic texturing with alkali solution is not suitable for multicrystalline silicon wafers because of its different grain orientation. Isotropic texturing with acid solution can uniformly etch multicrystalline silicon wafers unrelated with grain orientation, so we can get low surface reflectance. In this paper, the acid texturing solution is made up of only HF and $HNO_3$ for easy controlling the concentration and low cost compared to acid solution with organic additives. $HNO_3$ concentration and dipping time were varied to find the condition of minimum surface reflectance. Textured surfaces were observed Scanning Electron Microscope(SEM) and surface reflectance were measured. The best result of arithmetic mean(wavelength from 400 nm to 1000 nm) reflectance with acid texturing is 4.64 % less than alkali texturing.

Acid Texturing에 의한 다결정 실리콘 태양전지의 표면 반사율 감소에 대한 연구 (Investigation of Surface Reflectance Reduction for Multicrystalline Silicon Solar Cells with Acid Texturing)

  • 김지선;김범호;이은주;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.16-17
    • /
    • 2007
  • To improve efficiency of solar cells, it is important to make a light trapping structure to reduce surface reflectance for increasing absorption of sun light within the solar cells. One of the promising methods that can reduce surface reflectance is isotropic texturing with acid solution based on hydrofluoric acid(HF), nitric acid($HNO_3$), and organic additives. Anisotropic texturing with alkali solution is not suitable for multicrystalline silicon wafers because of its different grain orientation. Isotropic texturing with acid solution can uniformly etch multicrystalline silicon wafers unrelated with grain orientation, so we can get low surface reflectance. In this paper, the acid texturing solution is made up of only HF and $HNO_3$ for easy controling the concentration and low cost compared to acid solution with organic additives. $HNO_3$ concentration and dipping time were varied to find the condition of minimum surface reflectance. Textured surfaces were observed Scanning Electron Microscope(SEM) and surface reflectance were measured. The best result of arithmetic mean(wavelength from 400nm to 1000nm) reflectance with acid texturing is 4.64% less than alkali texturing.

  • PDF