• Title/Summary/Keyword: Surface coating layer

Search Result 1,182, Processing Time 0.027 seconds

Hydrophobic Coating on Fish Feed Using Dielectric Barrier Discharge Plasma Polymerization (유전체장벽방전 플라즈마 중합을 이용한 양어 사료의 소수성 코팅)

  • Lee, Sang Baek;Hung, Trinhquang;Jo, Jin Oh;Jung, Jun Bum;Im, Tae Heon;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • A plasma hydrophobic coating on commercial fish feed was conducted to prolong the floating time of feed, thereby enhancing the feed consumption rate and reducing the contamination of water in fish farms. The hydrophobic coating on the fish feed was prepared using an atmospheric-pressure dielectric barrier discharge (DBD) plasma with hexamethyldisiloxane (HMDSO), toluene and n-hexane as the precursors. The effect of the parameters such as input power, precursor type and coating time on the coating performance were examined. The physicochemical properties of the coating layer were analyzed using a Fourier transform infrared (FTIR) spectrometer and a contact angle (CA) analyzer. The water CA increased after the coating preparation, indicating that the surface changed from hydrophilic to hydrophobic. The FTIR characterization revealed that the hydrophobic layer was comprised of functional groups such as $CH_3$, Si-O-Si and Si-C. As a result of the hydrophobic coating, the floating time of the fish feed increased from several seconds to 3 minutes, which suggested that the plasma coating method could be a viable means for practical applications. Compared to the water CA measured as soon as the coating layer was prepared, the 6-day aged sample exhibited a substantial CA increase, confirming the aging effect on the improvement of the hydrophobicity.

Composite PEO-Coatings as Defence Against Corrosion and Wear: A Review

  • Gnedenkov, S.V.;Sinebryukhov, S.L.;Sergienko, V.I.;Gnedenkov, A.S.
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.212-219
    • /
    • 2019
  • This paper reviews recent approaches to develop composite polymer-containing coatings by plasma electrolytic oxidation (PEO) using various low-molecular fractions of superdispersed polytetrafluoroethylene (SPTFE). The features of the unique approaches to form the composite polymer-containing coating on the surface of MA8 magnesium alloy were summarized. Improvement in the corrosion and tribological behavior of the polymer-containing coating can be attributed to the morphology and insulating properties of the surface layers and solid lubrication effect of the SPTFE particles. Such multifunctional coatings have high corrosion resistance ($R_p=3.0{\times}10^7{\Omega}cm^2$) and low friction coefficient (0.13) under dry wear conditions. The effect of dispersity and ${\xi}$-potential of the nanoscale materials ($ZrO_2$ and $SiO_2$) used as electrolyte components for the plasma electrolytic oxidation on the composition and properties of the coatings was investigated. Improvement in the protective properties of the coatings with the incorporated nanoparticles was explained by the greater thickness of the protective layer, relatively low porosity, and the presence of narrow non-through pores. The impedance modulus measured at low frequency for the zirconia-containing layer (${\mid}Z{\mid}_{f=0.01Hz}=1.8{\times}10^6{\Omega}{\cdot}cm^2$) was more than one order of magnitude higher than that of the PEO-coating formed in the nanoparticles-free electrolyte (${\mid}Z{\mid}_{f=0.01Hz}=5.4{\times}10^4{\Omega}{\cdot}cm^2$).

FLOW BOILING HEAT TRANSFER FROM PLAIN AND MICROPOROUS COATED SURFACES IN SUBCOOLED FC-72

  • Rainey, K.N.;Li, G.;You, S.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.181-188
    • /
    • 2001
  • The present research is an experimental study of subcooled flow boiling behavior using flat, microporousenhanced square heater surfaces in pure FC-72. Two $1-cm^{2}$ copper surfaces, one highly polished (plain) and one microporous coated, were flush-mounted into a 12.7 mm square, horizontal flow channel. Testing was performed for fluid velocities ranging from 0.5 to 4 m/s (Reynolds numbers from 18,700 to 174,500) and pure subcooling levels from 4 to 20 K. Results showed both surfaces' nucleate flow boiling curves collapsed to one line showing insensitivity to fluid velocity and subcooling. The log-log slope of the microporous surface nucleate boiling curves was lower than the plain surface due to the conductive thermal resistance of the microporous coating layer. Both, increased fluid velocity and subcooling, increase the CHF values for both surfaces, however, the already enhanced boiling characteristics of the microporous coating appear dominant and require higher fluid velocities to provide additional enhancement of CHF to the microporous surface.

  • PDF

Synthesis of \$alpha-Al_2O_3/SiO_2$ Composite Powders for Reaction-Sintered Mullite and its Properties (반응소결 물라이트를 위한 \$alpha-Al_2O_3/SiO_2$ 복합분말의 합성 및 그 특성)

  • Kim, Hye-Soo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.909-914
    • /
    • 1995
  • From alumina powder and TEOS, $\alpha$-Al2O3/SiO2 composite powder for reaction-sintered mullite was synthesized by heterogeneous coagulation and surface coating, and investigated the mullitization reaction and sintering behavor of these powders. In $\alpha$-Al2O3/SiO2 composite powder prepared by heterogeneous coagulation, each alumina particles were surrounded by silica particles of 50~60 nm in size. And the alumina particles in composite powder prepared by surface coating were coated by uniform silica layer with thickness of 50 nm. In both methods, mullitization reaction was completed at 1$650^{\circ}C$ for 3h, and specimen sintered above 145$0^{\circ}C$ was about 95% fo the theoretical relative density. Mullite grains formed from the reaction with composite powders showed spherical shape with a size of 1~2${\mu}{\textrm}{m}$.

  • PDF

Properties Characterization of the Hydrophilic Inorganic Film as Function of Coating Thickness (코팅 두께에 따른 친수성 무기 필름의 특성 분석)

  • Joung, Yeunho;Choi, Won Seok;Shin, Yongtak;Lee, Minji;Kim, Heekon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.425-428
    • /
    • 2013
  • In this paper, we present a novel hydrophilic coating material (Wellture Finetech, Korea) which can be utilized as a coating layer for anti-contamination for electrical and electronic system. The coating material was deposited on 4 inch silicon wafer with several different film thickness. The film thickness was controlled by spin coating speed. After curing of the film, we have scratched by permanent marker to check self-cleaning property of the film. Also we have executed several mechanical tests of the films. As the spin coating speed is increased, the film thickness was thinned from 230 nm to 125 nm. Contact angle of the film was lowered from $30^{\circ}$ to $12^{\circ}$ as the spin coating speed is increased from 700 to 2,500 rpm. On permanent marker scratched film surface coated at 1,000 rpm, we have poured regular city water to investigate self cleaning property of the film. The scratches were gradually separated from the film surface due to super-hydrophilicity of the film. Hardness of spin coated film was 9H measured by ASTM D3363 method. and adhesion of all film was 5B tested by ASTM D3359 method. Also, to get exact hardness value of the film, we have utilized a nano-indenter. As spin speed is increased, the hardness of film was increased from 3 GPa to 5 GPa.

A Study of Various SiO2 Coating Control on White TiO2 Pigment for Cosmetic Applications (다양한 SiO2 코팅 제어를 통한 화장품용 루타일형 TiO2의 색상 및 물성 연구)

  • Park, Minsol;Shim, Wooyoung;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.207-212
    • /
    • 2022
  • Nanosized rutile titanium dioxide (TiO2) is used in inorganic pigments and cosmetics because of its high whiteness and duality. The high quality of the white pigments depends on their surface coating technique via the solgel process. SiO2 coatings are required to improve the dispersibility, UV-blocking, and whiteness of TiO2. Tetraethyl orthosilicate (TEOS) is an important coating precursor owing to its ability to control various thicknesses and densities. In addition, we use Na2SiO3 (sodium silicate) as a precursor because of its low cost. Compared to TEOS, which controls the pH using a basic catalyst, Na2SiO3 controls the pH using an acid catalyst, giving a uniform coating. The coating thickness of TiO2 is controlled using a surface modifier, cetrimonium bromide, which is used in various applications. The shape and thickness of the nanosized coating layer on TiO2 are analyzed using transmission electron microscopy, and the SiO2 nanoparticle behavior in terms of the before-and-after size distribution is measured using a particle size analyzer. The color measurements of the SiO2 pigment are performed using UV-visible spectroscopy.

Effect of LiCoO2-Coated Cathode on Performance of Molten Carbonate Fuel Cell

  • Kim, Dohyeong;Kim, Hyung Tae;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Woo, Ju Young;Han, Haksoo
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.112-119
    • /
    • 2022
  • Molten carbonate fuel cells (MCFCs) are environmentally friendly, large-capacity power generation devices operated at approximately 650℃. If MCFCs are to be commercialized by improving their competitiveness, their cell life should be increased by operating them at lower temperatures. However, a decrease in the operating temperature causes a reduction in the cell performance because of the reduction in the electrochemical reaction rate. The cell performance can be improved by introducing a coating on the cathode of the cell. A coating with a high surface area expands the triple phase boundaries (TPBs) where the gas and electrolyte meet on the electrode surface. And the expansion of TPBs enhances the oxygen reduction reaction of the cathode. Therefore, the cell performance can be improved by increasing the reaction area, which can be achieved by coating nanosized LiCoO2 particles on the cathode. However, although a coating improves the cell performance, a thick coating makes gas difficult to diffuse into the pore of the coating and thus reduces the cell performance. In addition, LiCoO2-coated cathode cell exhibits stable cell performance because the coating layer maintains a uniform thickness under MCFC operating conditions. Therefore, the performance and stability of MCFCs can be improved by applying a LiCoO2 coating with an appropriate thickness on the cathode.

Properties of Ni-SiC Composite Coating Layers Prepared by Electroplating Method (전해도금법으로 형성한 Ni-SiC 복합피막층의 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Koo, Seok-Bon;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.160-165
    • /
    • 2006
  • Ni-SiC composite coating layers were prepared by electroplating method and their deposition rate, codeposition of SiC, morphology, surface roughness, hardness, wear and friction properties were investigated. It was found that the deposition rate and the codeposition of SiC in the composite coating layer increased with increasing concentration of SiC in the solution only at the early stage. Both of them reached certain maxima and then decreased with increasing concentration of SiC. Rough surface was obtained with increasing codeposition of SiC, which is probably due to the agglomeration of the SiC particle in the vicinity of surface. Vickers hardness increased with increasing codeposition of SiC and heat treatment at $300^{\circ}C$ in air for 1 hour. Wear volume decreased with increasing codeposition of SiC and friction coefficient increased with increasing codeposition of SiC at the early stage, and it became almost constant. Such wear and friction behaviors are desirable for the practical application.

A Study on the standardize the characteristic evaluation of DC magnetron sputtered silver coatings for engineering purposes (D.C. magnetron sputter를 이용한 Ag layer 건식 도금층의 특성 평가 국제 표준화에 대한 연구)

  • Gyawali, Gobinda;Choi, Jinhyuk;Lim, Tae Kwan;Jung, Myoung Joon;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.249-249
    • /
    • 2015
  • Silver films have been of considerable interest for years due to their better performance relative to other metal films for engineering applications. A series of multi-layer silver coatings with different thickness (i.e. 0.3 um to 1.5 um) were prepared on Aluminium substrate containing copper undercoat by direct current (DC) magnetron sputtering method. For the comparative purpose, similar thickness silver coatings were prepared by electrolytic deposition method. Microstructural, morphological, and mechanical characteristics of the silver coatings were evaluated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), Surface roughness test, microhardness test and nano-scratch test. From the results, it has been elucidated that the silver films prepared by DC magnetron sputtering method has superior properties in comparison to the wet coating method. On the other hand, DC magnetron sputtering method is relatively easier, faster, eco-friendly and more productive than the electrolytic deposition method that uses several kinds of hazardous chemicals for bath formulation. Therefore, a New Work Item Proposal (NWIP) for the test methods standardization of DC magnetron sputtered silver coatings has recently been proposed via KATS, Korea and a NP ballot is being progressed within a technical committee "ISO/TC107-metallic and other inorganic coating".

  • PDF

Preparation of TiO2-SiO2 Organic-Inorganic Hybrid Coating Material by Sol-gel Method and Evaluation of Corrosion Characteristics (졸-겔법에 의한 유·무기 TiO2-SiO2 혼성(Hybrid)코팅재료의 제조 및 부식 특성 평가)

  • Noh, J.J.;Maeng, W.Y.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.64-75
    • /
    • 2015
  • Single $TiO_2$ coating prepared by sol-gel process usually experiences cracks in coating layer. In order to prevent cracks, an inorganic-organic hybrid $TiO_2-SiO_2$ coating was synthesized by combining precursors with an organic functional group. Five different coatings with various ratios of (1:8, 1:4, 1:1, 1:0.25 and 1:0.125) titanium alkoxide (TBOT, Tetrabutylorthotitanate) to organo-alkoxysilane (MAPTS, ${\gamma}$-Methacryloxy propyltrimethoxysilane) on carbon steel substrate were made by sol-gel dip coating. The prepared coatings were analyzed to study the coating properties (surface crack, thickness, composition) by scanning electron microscope (SEM), focused ion beam (FIB), and Fourier transform infrared spectroscopy (FT-IR). Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were also performed to evaluate the corrosion characteristics of the coatings. Crack free $TiO_2-SiO_2$ hybrid coatings were prepared with the optimization of the ratio of TBOT to MAPTS. The corrosion rates were significantly decreased in the coatings for the optimized precursor ratio without cracks.