• 제목/요약/키워드: Surface Grafting

검색결과 190건 처리시간 0.03초

아크릴아미드의 PAN에 대한 표면 그라프트 공중합에 관한연구 (Surface Graft Copolymerization of Acrylamide onto Polyacrylonitrile)

  • 최재혁;김한도
    • 한국염색가공학회지
    • /
    • 제5권2호
    • /
    • pp.144-148
    • /
    • 1993
  • To increase the moisture content and thereby to reduce the static charge of polyacrylonitrile (PAN), thin layer surface photografting of acylamide (AAm) onto PAN fabrics by using benzophenone as a initiator with a mixtured solvent was carried. The effects of reaction conditions such as monomer, initiator concentrations, UV irradiation time and immersion time of fabrics on grafting were investigated. The percent grafting slightly increased with increasing monomer concentration, benzophenone concentration up to limiting value and thereafter decreased or level offed. The percent grafting was significantly increased with increasing irradiation and immersion times. The moisture regain increased with increasing the percent grafting. The static charge decreased with increasing the percent grafting.

  • PDF

Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications

  • Lee, Jung Heon;Yi, Gyu Sung;Lee, Jin Woong;Kim, Deug Joong
    • Journal of Periodontal and Implant Science
    • /
    • 제47권6호
    • /
    • pp.388-401
    • /
    • 2017
  • Purpose: The physicochemical properties of a xenograft are very important because they strongly influence the bone regeneration capabilities of the graft material. Even though porcine xenografts have many advantages, only a few porcine xenografts are commercially available, and most of their physicochemical characteristics have yet to be reported. Thus, in this work we aimed to investigate the physicochemical characteristics of a porcine bone grafting material and compare them with those of 2 commercially available bovine xenografts to assess the potential of xenogenic porcine bone graft materials for dental applications. Methods: We used various characterization techniques, such as scanning electron microscopy, the Brunauer-Emmett-Teller adsorption method, atomic force microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and others, to compare the physicochemical properties of xenografts of different origins. Results: The porcine bone grafting material had relatively high porosity (78.4%) and a large average specific surface area (SSA; $69.9m^2/g$), with high surface roughness (10-point average roughness, $4.47{\mu}m$) and sub-100-nm hydroxyapatite crystals on the surface. Moreover, this material presented a significant fraction of sub-100-nm pores, with negligible amounts of residual organic substances. Apart from some minor differences, the overall characteristics of the porcine bone grafting material were very similar to those of one of the bovine bone grafting material. However, many of these morphostructural properties were significantly different from the other bovine bone grafting material, which exhibited relatively smooth surface morphology with a porosity of 62.0% and an average SSA of $0.5m^2/g$. Conclusions: Considering that both bovine bone grafting materials have been successfully used in oral surgery applications in the last few decades, this work shows that the porcinederived grafting material possesses most of the key physiochemical characteristics required for its application as a highly efficient xenograft material for bone replacement.

Grafting of Glycidyl Methacrylate upon Coralline Hydroxyapatite in Conjugation with Demineralized Bone Matrix Using Redox Initiating System

  • Murugan, R.;Rao, K.Panduranga
    • Macromolecular Research
    • /
    • 제11권1호
    • /
    • pp.14-18
    • /
    • 2003
  • Grafting of glycidyl methacrylate (GMA) upon coralline hydroxyapatite in conjugation with demineralized bone matrix (CHA-DBM) using equal molar ratio of potassium persulfate/sodium metabisulfite redox initiating system was investigated in aqueous medium. The optimum reaction condition was standardized by varying the concentrations of backbone, monomer, initiator, temperature and time. The results obtained imply that the percent grafting was found to increase initially and then decrease in most of the cases. The optimum temperature and time were found to be 50 $^{\circ}C$ and 180 min, respectively, to obtain higher grafting yield. Fourier transform infrared (FT-IR) spectroscopy and X-ray powder diffraction (XRD) method were employed for the proof of grafting. The FT-IR spectrum of grafted CHA-DBM showed epoxy groups at 905 and 853 $cm^{-1}$ / and ester carbonyl group at 1731 $cm^{-1}$ / of poly(glycidyl methacrylate) (PGMA) in addition to the characteristic absorptions of CHA-DBM, which provides evidence of the grafting. The XRD results clearly indicated that the crystallographic structure of the grafted CHA-DBM has not changed due to the grafting reaction. Further, no phase transformation was detected by the XRD analysis, which suggests that the PGMA is grafted only on the surface of CHA-DBM backbone. The grafted CHA-DBM will have better functionality because of their surface modification and hence they may be more useful in coupling of therapeutic agents through epoxy groups apart from being used as osteogenic material.

대기압 플라즈마 유도 그라프트 공중합으로 합성된 망상형 PU-g-PAAc 폼의 미생물 고정화능 향상 (Enhancement of Microbial Immobilization on the Surface of a Reticulated PU-g-PAAc Foam prepared through Graft Copolymerization induced by Atmosoheric Pressure Plasma Treatment)

  • 명성운;장영미;남기천;최호석;조대철
    • KSBB Journal
    • /
    • 제19권5호
    • /
    • pp.399-405
    • /
    • 2004
  • A reticulated PU-g-PAAc foam was modified through the surface treatment of PU foam by one atmospheric pressure plasma. The synthesized PU-g-PAAc foam was prepared for the purpose of immobilizing microbial organisms. We also attempted different plasma treatment methods including simple plasma treatment, plasma induced grafting and plasma induced grafting followed by plasma re-treatment. The effect of grafting on equilibrium water content (EWC) of PU forms was examined by swelling measurements. Adhesion test was performed to investigate the effect of different plasma treatment methods on the improvement of microbial immobilization. Two foams modified by plasma induced grafting and plasma re-treatment after grafting showed 2.7 and 3.0 fold higher microbial immobilization than unmodified one, respectively. Meanwhile, simple plasma treatment showed a little enhancement. FT-IR analysis of each sample verified the contribution of surface functional groups on the enhancement of microbial immobilization. SEM observation confirmed microbial adherence.

Surface Modification of Polypropylene Membrane by ${\gamma}$ Irradiation Methods and their Solutes Permeation Behaviors

  • Shim, J. K.;Lee, S. H.;Kwon, O. H.;Lee, Y. M.;Nho, Y. C.
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 춘계 총회 및 학술발표회
    • /
    • pp.99-101
    • /
    • 1998
  • 1. Introduction : The conventional grafting polymerization technique requires chemically reactive groups on the surface as well as on the polymer chains. For this reason, a series of prefunctionalization steps are necessary for covalent grafting. The surface prefunctionalizational technique for grafting can be used to ionization radiation, UV, plasma, ion beam or chemical initiators. Of these techniques, radiation method is one of the useful methods because of uniform and rapid creation of active radical sites without catalytic contamination in grafted samples. If the diffusion of monomer into polymer is large enough to come to the inside of polymer substrate, a homogeneous and uniform grafting reaction can be carried out throughout the whole polymer substrate. Radiation-induced grafting method may attach specific functional moieties to a polymeric substrate, such as preirradiation and simultaneous irradiation. The former is irradiated at backbone polymer in vacuum or nitrogen gas and air, and then subsequent monomer grafting by trapped or peroxy radicals, while the latter is irradiated at backbone polymer in the presence of the monomer. Therefore, radiation-induced polymerization can be used to modification of the chemical and physical properties of the polymeric materials and has attracted considerable interest because it imparts desirable properties such as blood compatibility. membrane quality, ion excahnge, dyeability, protein adsorption, and immobilization of bioactive materials. Synthesizing biocompatible materials by radiation method such as preirradiation or simultaneous irradiation has often used $\gamma$-rays to graft hydrophilic monomers onto hydrophobic polymer substrates. In this work, in attempt to produce surfaces that show low levels of anti-fouling of bovine serum albumin(BSA) solutions, hydroxyethyl methacrylate(HEMA) was grafted polypropylene membrane surfaces by preirradiation technique. The anti-fouling effect of the polypropylene membrane after grafting was examined by permeation BSA solution.

  • PDF

감압 상태 순환유동층 반응기에서 플라즈마 그래프팅에 의한 미세입자 표면 개질 (Surface Modification of Fine Particle by Plasma Grafting in a Circulating Fluidized Bed Reactor under Reduced Pressure)

  • 박성희
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.614-619
    • /
    • 2015
  • 미세입자의 플라즈마 표면 개질을 감압상태하의 순환유동층 반응기에서 수행하였다. 플라즈마에 의해 처리된 폴리스타이렌 입자는 폴리에틸렌글리콜로 표면에 그래프팅하였다. 표면 개질 전 입자와 플라즈마 처리된 입자 그리고 그래프팅된 입자의 특성은 각각 DPPH 방법, FTIR, SEM 그리고 접촉각 측정으로 분석하였다. 플라즈마 처리된 폴리스타이렌 입자의 표면에 과산화물이 잘 형성되었다. 또한, 폴리에틸렌글리콜의 그래프팅 중합에 의해 플라즈마 처리된 입자 표면에 그래프팅이 잘 분산되었다. 따라서 감압상태의 순환 유동층 반응기에서 플라즈마 처리에 의한 PEG-g-PS 입자를 성공적으로 형성할 수 있었다.

Influence of Reaction Conditions on the Grafting Pattern of 3-Glycidoxypropyl trimethoxysilane on Montmorillonite

  • He, Wentao;Yao, Yong;He, Min;Kai, Zhang;Long, Lijuan;Zhang, Minmin;Qin, Shuhao;Yu, Jie
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.112-116
    • /
    • 2013
  • Surface modification of montmorillonite (MMT) with 3-glycidoxypropyl trimethoxysilane (3GTO) in mild methanol/water mixture has been investigated in detail. The influence of reaction conditions (including silane concentration in feed, reaction time and reaction temperature) on the grafting amount and yield of silane, and further on the grafting pattern of silanes was studied by thermogravimetric analysis, elemental analysis, X-ray diffraction (XRD) and BET. Higher silane concentration, longer reaction time and higher reaction temperature are all benefit to higher grafting amount. When the grafting reaction was performed with 3 mmol/g silane concentration, at $90^{\circ}C$ for 24 h, the grafted amount and yield of silane reached 1.4443 mmol/g and 30%, respectively. Based on the XRD and BET data analysis, a speculation that the grafting pattern of silanes was concentration dependence was proposed.

플라즈마 처리된 폴리프로필렌 표면 위에 글리시딜메타크릴레이트의 에멀젼 그래프팅 (Emulsion Grafting of Glycidyl Methacrylate onto Plasma-treated Polypropylene Surface)

  • 지한솔;류욱연;최호석;김재하;박한오
    • 폴리머
    • /
    • 제36권1호
    • /
    • pp.65-70
    • /
    • 2012
  • 글리시딜메타크릴레이트(GMA)의 플라즈마 유도 그래프트 공중합을 통해 기재로 사용한 평판형 폴리프로필렌 위에 에폭시 그룹을 도입하였다. 그래프트 공중합은 에멀젼 공중합법을 적용하였고, 기존의 용액 공중합과 비교하여 그 효과를 확인하고자 하였다. 대기압 플라즈마 처리 조건은 RF power 200 W, 처리시간 30초, Ar 기체 유속 6 LPM으로 고정하였고, 처리 후의 대기 중 노출시간 역시 5분으로 고정하였다. 중합반응에서는 GMA의 농도, 반응온도, 반응시간에 따라 표면 그래프트도의 변화를 최적화하였다. 그 결과, GMA 농도 12%, 반응온도 $90^{\circ}C$, 반응시간 5시간으로 중합하였을 때 가장 높은 그래프트도를 나타내었다. 분석 결과, 같은 반응조건 하에서 에멀젼 중합이 용액 중합에 비하여 더 많은 에폭시 그롭 도입에 효과적임을 확인하였다.

Polyvinylalcohol-graft-poly (2,2,2-trifluoroethyl methacrylate) Copolymer 의 합성과 표면 특성에 관한 연구 (Characterization of Surface of Polyvinylalcohol-graft-poly (2,2,2-trifluoroethyl methacrylate) Copolymer)

  • 채희주;이석준;고석원
    • 대한화학회지
    • /
    • 제36권1호
    • /
    • pp.131-136
    • /
    • 1992
  • $Ce^{4+}$ ion을 개시제로 사용하여 폴리비닐알코올에 2,2,2-trifluoroethyl methacrylate를 그라프트중합 반응시켜 새로은 PVA/perfluoroalkylmethacrylate 그라프트 공중합체들을 합성하였다. 수소 결합능이 큰 폴리비닐알코올에 여러 가지 그라프트율을 갖는 공중합체의 표면 자유에너지를 이 고체 표면들과 여러가지 액체와의 접촉각을 측정하여 구하였다. Perfluoroalkyl group이 그라프팅이 커짐에 따라 고체의 표면 자유에너지는 감소하며, 그 고체들은 극성 부분에 의해 기여되는 힘이 크므로 극성 고체의 분자 특성을 고려한 식으로부터 ${\gamma}_{si}$을 구하여 임계 표면 에너지 ${\gamma}_c$를 계산하였다.

  • PDF

Polymer brush: a promising grafting approach to scaffolds for tissue engineering

  • Kim, Woonjung;Jung, Jongjin
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.655-661
    • /
    • 2016
  • Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate's properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.