DOI QR코드

DOI QR Code

Surface Modification of Fine Particle by Plasma Grafting in a Circulating Fluidized Bed Reactor under Reduced Pressure

감압 상태 순환유동층 반응기에서 플라즈마 그래프팅에 의한 미세입자 표면 개질

  • Park, Sounghee (Department of Energy Engineering, Woosuk University)
  • 박성희 (우석대학교 에너지공학과)
  • Received : 2014.12.09
  • Accepted : 2014.12.15
  • Published : 2015.10.01

Abstract

A plasma surface modification of powders has been carried out in a circulating fluidized bed reactor under reduced pressure. Polystyrene (PS) particles treated by plasma are grafted with polyethylene glycol (PEG) on the surface. The virgin, plasma-treated and grafted powders were characterized by DPPH method, FTIR, SEM and contact angle meter. The plasma-treated PS powders have well formed peroxide on the surface, By PEG grafting polymerization, PEG is well grafted and dispersed on the surface of the plasma-treated PS powders. The PEG-g-PS particle was successfully synthesized using the plasma circulating fluidized bed reactor under reduced pressure.

미세입자의 플라즈마 표면 개질을 감압상태하의 순환유동층 반응기에서 수행하였다. 플라즈마에 의해 처리된 폴리스타이렌 입자는 폴리에틸렌글리콜로 표면에 그래프팅하였다. 표면 개질 전 입자와 플라즈마 처리된 입자 그리고 그래프팅된 입자의 특성은 각각 DPPH 방법, FTIR, SEM 그리고 접촉각 측정으로 분석하였다. 플라즈마 처리된 폴리스타이렌 입자의 표면에 과산화물이 잘 형성되었다. 또한, 폴리에틸렌글리콜의 그래프팅 중합에 의해 플라즈마 처리된 입자 표면에 그래프팅이 잘 분산되었다. 따라서 감압상태의 순환 유동층 반응기에서 플라즈마 처리에 의한 PEG-g-PS 입자를 성공적으로 형성할 수 있었다.

Keywords

References

  1. McGint, K. M. and Brittain, W. J., "Hydrophilic Surface Modification of Poly(vinyl chloride) Film and Tubing using Physisorbed Free Radical Grafting Technique," Polymer, 49, 4350-4357(2008). https://doi.org/10.1016/j.polymer.2008.07.063
  2. Nie, F. Q., Xu, Z. K., Ye, P., Wu, J. and Seta, P., "Acrylonitrile-based Copolymer Membranes Containing Reactive Groups: Effects of Surface-immobilized Poly(ethylene glycol)s on Anti-fouling Properties and Blood Compatibility," Polymer, 45, 399-407(2004). https://doi.org/10.1016/j.polymer.2003.11.007
  3. Park, B. D. and Lee, Y. S., "The Effect of PEG Groups on Swelling Properties of PEG Grafted-polystyrene Resins in Various Solvents," React. Funct. Polym., 44, 41-46(2000). https://doi.org/10.1016/S1381-5148(99)00075-9
  4. Jo, S. and Park, K., "Surface Modification using Silanated Poly (ethylene glycol)s," Biomaterials, 21, 605-616(2000). https://doi.org/10.1016/S0142-9612(99)00224-0
  5. Qui, Y. X., Klee, D., Pluster, W., Severich, B. and Hocker, H., "Surface Modification of Polyurethane by Plasma-Induced Graft Polymerization of Poly(ethy1ene glycol) Methacrylate," J. Appl. Polym. Sci., 61, 2372-2382(1996).
  6. Suzuki, M., Kishida, A., Iwata, H. and Ikada, Y., "Graft Copolymerization of Acrylamide onto a Polyethylene Surface Pretreated with a Glow Discharge", Macromolecules, 19, 1804-1808(1986). https://doi.org/10.1021/ma00161a005
  7. Fujimoto, K., Takebayashi, Y., Inoue, H. and Ikada, "Ozone-Induced Graft Polymerization onto Polymer Surface," J. Polym. Sci. Pol. Chem., 31, 1035-1043(1993). https://doi.org/10.1002/pola.1993.080310426
  8. Kim, H. Y. and Yashuda, H. K., "Improvement of Fatigue Properties of Poly(methyl methacrylate) Bone Cement by Means of Plasma Surface Treatment of Fillers," J. Biomed., Mater. Res., 48, 135-142(1999). https://doi.org/10.1002/(SICI)1097-4636(1999)48:2<135::AID-JBM7>3.0.CO;2-6
  9. Zhang, F., Kang, E. T., Neoh, K. G., Wang, P. and Tian, K. L., "Modification of Si(100) Surface by the Grafting of Poly(ethylene glycol) for Reduction in Protein Adsorption and Platelet Adhesion," J. Biomed. Mater. Res., 56, 324-332(2001). https://doi.org/10.1002/1097-4636(20010905)56:3<324::AID-JBM1100>3.0.CO;2-P
  10. Yim, E. C., Kim, S. J., Oh, I. K. and Kee, C. D., "Plasma Surface Modification of Graphene and Combination with Bacteria Cellulose," Korean Chem. Eng. Res., 51, 388-393(2013). https://doi.org/10.9713/kcer.2013.51.3.388
  11. Yu, H. Y., Tiang, Z. Q., Huang, L., Gheng, G., Li, W., Zhou, J., Yan, M. G., Gu, J. S. and Wei, X. W., "Surface Modification of Polypropylene Macroporous Membrane to Improve Its Antifouling Characteristics in a Submerged Membrane Bioreactor: $H_2O$ Plasma Treatment," Water Res., 42, 4341-4347(2008). https://doi.org/10.1016/j.watres.2008.05.028
  12. Gaiolas, C., Belgacem, M. N., Siva, L., Thielemans, W., Costa, A. P., Nunes, M. and Silva, M. J. S., "Green Chemicals and Process to Graft Cellulose Fibers," J. Colloid Interf. Sci., 330, 298-302(2009). https://doi.org/10.1016/j.jcis.2008.10.059
  13. Yasuda, H. and Yashuda, T., "The Competitive Ablation and Polymerization (CAP) Principle and the Plasma Sensitivity of Elements in Plasma Polymerization and Treatment," J. Polymer. Sci. Pol. Chem., 38, 943-953(2000). https://doi.org/10.1002/(SICI)1099-0518(20000315)38:6<943::AID-POLA3>3.0.CO;2-3
  14. Ferrari, B., Herencia, A. J. S. and Moreno, R., "Electrophoretic Forming of $Al_2O_3$/Y-TZP Layered Ceramics From Aqueous Suspensions," Mater. Res. Bull., 33, 487-499(1998). https://doi.org/10.1016/S0025-5408(97)00244-4
  15. Oh, S. M. and Park, D. W., "Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet," Korean J. Chem. Eng., 17, 299-303(2000). https://doi.org/10.1007/BF02699044
  16. Jung, S. H., Park, S. H. and Kim, S. D., "Surface Treatment of Polymeric Fine Powders by CF4 Plasma in a Circlulating Fluidized Bed Reactor," J. Chem. Eng. Jap., 37, 166-173(2004). https://doi.org/10.1252/jcej.37.166
  17. Jung, S. H., Park, S. H., Lee, D. H. and Kim, S. D., "Surface Modification of HDPE Powders by Oxygen Plasma in a Circulating Fluidized Bed Reactor," Polym. Bull., 47, 199-205(2001). https://doi.org/10.1007/s002890170012
  18. Park, S. H. and Kim, S. D., "Oxygen Plasma Surface Treatment of Polymer Powder in a Fluidized Bed Reactor," Colloid Surface A., 133, 33-39(1998). https://doi.org/10.1016/S0927-7757(97)00109-X
  19. Park, S. H. and Kim, S. D., "Plasma Surface treatment of HDPE Powder in a Fluidized Bed Reactor," Polym. Bull., 33, 249-256(1994). https://doi.org/10.1007/BF00297363
  20. Gref, R., Luck, M., Quellec, P., Marchand, M., Dellacherie, D., Harnisch, S., Blunk, T. and Muller, R. H., "'Stealth' Corona-core Nanoparticles Surface Modified by Polyethylene Glycol (PEG): Influences of the Corona (PEG Chain Length and Surface Density) and of the Core Composition on Phagocytic Uptake and Plasma Protein Adsorption," Colloid Surface. B, 18, 301-313(2000). https://doi.org/10.1016/S0927-7765(99)00156-3
  21. Feng, L. B., Zhou, S. X., You, B. and Wu, L. M., "Synthesis and Surface Properties of Polystyrene-graftpoly(ethylene glycol) Copolymers," J. Appl. Polym. Sci., 103, 1458-1465(2007). https://doi.org/10.1002/app.24953
  22. Appendini, P. and Hotchkiss, J. H., "Surface Modification of Poly(styrene) by the Attachment of an Antimicrobial Peptide," J. Appl. Polym. Sci., 81, 609-616(2001). https://doi.org/10.1002/app.1476
  23. Song, L. H., Park, S. H., Jung, S. H., Kim, S. D. and Park, S. B., "Synthesis of Polyethylene glycol-polystyrene Core-shell Structure Particles in a Plasma-fluidized Bed Reactor," Korean J. Chem. Eng., 28(2), 627-632(2011). https://doi.org/10.1007/s11814-010-0390-5
  24. Song, L. H., "Surface Modification of Polystyrene by Plasma Grafting of PEG in a Fluidized Bed Reactor," MS. Thesis, KAIST, Korea (2002).
  25. Park, S. H., "Study on Plasma Surface Grafting Modification of Fine Particle in a Circulating Fluidized Bed Reactor," KOSEF report, R05-2002-000-0129-0(2004).
  26. Lee, S. H., Hsiue, G. H., Kao, C. H. and Chang, P. C. T., "Artificial Cornea: Surface Modification of Silicone Rubber Membrane by Graft Polymerization of PHEMA via Glow Discharge," Biomaterials, 17, 587-595(1996). https://doi.org/10.1016/0142-9612(96)88709-6

Cited by

  1. Plasma treatment of polymer powders - from laboratory research to industrial application pp.16128850, 2018, https://doi.org/10.1002/ppap.201800133
  2. 감압 순환유동층 플라즈마 반응기의 축방향 고체체류량 vol.54, pp.4, 2016, https://doi.org/10.9713/kcer.2016.54.4.527