Grafting of Glycidyl Methacrylate upon Coralline Hydroxyapatite in Conjugation with Demineralized Bone Matrix Using Redox Initiating System

  • Murugan, R. (Biomaterials Laboratory, Central Leather Research Institute) ;
  • Rao, K.Panduranga (Biomaterials Laboratory, Central Leather Research Institute)
  • Published : 2003.02.01

Abstract

Grafting of glycidyl methacrylate (GMA) upon coralline hydroxyapatite in conjugation with demineralized bone matrix (CHA-DBM) using equal molar ratio of potassium persulfate/sodium metabisulfite redox initiating system was investigated in aqueous medium. The optimum reaction condition was standardized by varying the concentrations of backbone, monomer, initiator, temperature and time. The results obtained imply that the percent grafting was found to increase initially and then decrease in most of the cases. The optimum temperature and time were found to be 50 $^{\circ}C$ and 180 min, respectively, to obtain higher grafting yield. Fourier transform infrared (FT-IR) spectroscopy and X-ray powder diffraction (XRD) method were employed for the proof of grafting. The FT-IR spectrum of grafted CHA-DBM showed epoxy groups at 905 and 853 $cm^{-1}$ / and ester carbonyl group at 1731 $cm^{-1}$ / of poly(glycidyl methacrylate) (PGMA) in addition to the characteristic absorptions of CHA-DBM, which provides evidence of the grafting. The XRD results clearly indicated that the crystallographic structure of the grafted CHA-DBM has not changed due to the grafting reaction. Further, no phase transformation was detected by the XRD analysis, which suggests that the PGMA is grafted only on the surface of CHA-DBM backbone. The grafted CHA-DBM will have better functionality because of their surface modification and hence they may be more useful in coupling of therapeutic agents through epoxy groups apart from being used as osteogenic material.

Keywords

References

  1. Biomater. v.11 K. Ono;T. Yammamura;T. Nakammura;T. Kokubo https://doi.org/10.1016/0142-9612(90)90008-E
  2. Clin. Orthop. Rel. Res. v.157 M. Jarcho
  3. Biomater. v.1 K. De Groot https://doi.org/10.1016/0142-9612(80)90059-9
  4. J. Mater. Sci. Mater. Med. v.7 C. Muller-Mai;C. Voigt;S. R. De Almeida Reis;H. Herbst;U. M. Gross https://doi.org/10.1007/BF00705429
  5. Clin. Plast. Surg. v.12 J. Glowaki;J. B. Mulliken
  6. Biomater. v.17 S. Mizuno;J. Glowacki https://doi.org/10.1016/0142-9612(96)00041-5
  7. Science v.150 M. R. Urist https://doi.org/10.1126/science.150.3698.893
  8. Proc. Natl. Acad. Sci. USA v.80 T. K. Sampath;A. H. Reddi https://doi.org/10.1073/pnas.80.21.6591
  9. Clin. Orthop. v.263 T. Sato;M. Kavamura;K. Sato;T. Miura
  10. Clin. Orthop. v.278 S. Kotani;T. Yammamura;T. Nakamura;T. Kitsugi;Y. Furita;K. Kawanable;T. Kokubo
  11. Biomater. v.21 A. W. Eckert;D. Grobe;U. Rothe https://doi.org/10.1016/S0142-9612(99)00098-8
  12. J. Appl. Polym. Sci. R. Murugan;K. Panduranga Rao
  13. Proceedings of XXV IULTCS Congress v.CTO-4 T. Sathian;T. P. Sastry;Y. L. Narayana;G. R. Krishnan
  14. J. Biomat. Sci. Polym. Ed. v.7 K. Panduranga Rao https://doi.org/10.1163/156856295X00526
  15. Biomater. v.17 M. Sivakumar;T. S. Sampathkumar;K. L. Shantha;K. Panduranga Rao https://doi.org/10.1016/0142-9612(96)87651-4
  16. Biomater. v.17 S. Mizuno;J. Glowaki https://doi.org/10.1016/0142-9612(96)00041-5
  17. J. Polym. Sci., Polym. Chem. Ed. v.12 Y. Ikada;Y. Nishizaki;I. Sakurada https://doi.org/10.1002/pol.1974.170120823
  18. Treatise on Collagen v.1 P. H. Von Hippel;G.N. Ramachandran(ed.)