Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.1.112

Influence of Reaction Conditions on the Grafting Pattern of 3-Glycidoxypropyl trimethoxysilane on Montmorillonite  

He, Wentao (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University)
Yao, Yong (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University)
He, Min (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University)
Kai, Zhang (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University)
Long, Lijuan (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University)
Zhang, Minmin (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University)
Qin, Shuhao (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University)
Yu, Jie (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University)
Publication Information
Abstract
Surface modification of montmorillonite (MMT) with 3-glycidoxypropyl trimethoxysilane (3GTO) in mild methanol/water mixture has been investigated in detail. The influence of reaction conditions (including silane concentration in feed, reaction time and reaction temperature) on the grafting amount and yield of silane, and further on the grafting pattern of silanes was studied by thermogravimetric analysis, elemental analysis, X-ray diffraction (XRD) and BET. Higher silane concentration, longer reaction time and higher reaction temperature are all benefit to higher grafting amount. When the grafting reaction was performed with 3 mmol/g silane concentration, at $90^{\circ}C$ for 24 h, the grafted amount and yield of silane reached 1.4443 mmol/g and 30%, respectively. Based on the XRD and BET data analysis, a speculation that the grafting pattern of silanes was concentration dependence was proposed.
Keywords
Surface modification; Montmorillonite; 3-Glycidoxypropyl trimethoxysilane; Grafting pattern;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Mater. Res. 1993, 8, 1174.   DOI   ScienceOn
2 Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T. Chem. Mater. 2001, 13, 3516.   DOI   ScienceOn
3 Leu, C. M.; Wu, Z. W.; Wei, K. H. Chem. Mater. 2002, 14, 3016.   DOI   ScienceOn
4 Juang, T. Y.; Chen, Y. C.; Tsai, C. C.; Dai, S. A.; Wu, T. M.; Jeng, R. J. Appl. Clay Sci. 2010, 48, 103.   DOI   ScienceOn
5 Brnardic, I.; Huskic, M.;Zigon, M.; Ivankovic, M. J. Non-cryst. Solids. 2008, 354, 1986.   DOI   ScienceOn
6 Rzayev, Z. M. O.; enol, B.; Soylemez, E. A. Eng. 2011, 3, 1446.
7 Xie, W.; Gao, Z.; Pan, W. P.; Hunter, D.; Singh, A.; Vaia, R. Chem. Mater. 2001, 13, 2979.   DOI   ScienceOn
8 Krishna, S. V.; Pugazhenthi, G. Int. J. Polym. Mater. 2010, 60, 144.   DOI
9 He, H.; Duchet, J.; Galy, J.; Gerard, J. F. J. Colloid Interface Sci. 2005, 288, 171.   DOI   ScienceOn
10 Herrera, N. N.; Letoffe, J. M.; Reymond, J. P.; Bourgeat-Lami, E. J. Mater. Chem. 2005, 15, 863.   DOI   ScienceOn
11 Wang, L.; Wang, K.; Chen, L.; He, C.; Zhang, Y. Polym. Eng. Sci. 2006, 46, 215.   DOI   ScienceOn
12 Shanmugharaj, A.; Rhee, K. Y.; Ryu, S. H. J. Colloid Interface Sci. 2006, 298, 854.   DOI   ScienceOn
13 Yang, S.; Yuan, P.; He, H.; Qin, Z.; Zhou, Q.; Zhu, J.; Liu, D. Appl. Clay Sci. 2012, 62, 8.   DOI   ScienceOn
14 Park, M.; Shim, I. K.; Jung, E. Y.; Choy, J. H. J. Phys. Chem. Solids 2004, 65, 499.   DOI   ScienceOn
15 Frost, R. L.; Daniel, L. M.; Zhu, H. Y. J. Colloid Interface Sci. 2008, 321, 302.   DOI   ScienceOn
16 Park, K. W.; Kwon, O. Y. Bull. Korean Chem. Soc. 2004, 25, 965.   DOI   ScienceOn
17 Shen, W.; He, H.; Zhu, J.; Yuan, P.; Frost, R. L. J. Colloid Interface Sci. 2007, 313, 268.   DOI   ScienceOn
18 Piscitelli, F.; Posocco, P.; Toth, R.; Fermeglia, M.; Pricl, S.; Mensitieri, G.; Lavorgna, M. J. Colloid Interface Sci. 2010, 351, 108.   DOI   ScienceOn
19 Chen, G. X., Kim, H. S.; Shim, J. H.; Yoon, J.-S. Macromol. 2005, 38, 3738.   DOI   ScienceOn
20 Xie, W.; Xie, R.; Pan, W. P.; Hunter, D.; Koene, B.; Tan, L. S.; Vaia, R. Chem. Mater. 2002, 14, 4837.   DOI   ScienceOn
21 Lin, J. J.; Hsu, Y. C.; Wei, K. L. Macromol. 2007, 40, 1579.   DOI   ScienceOn
22 Dai, J. C.; Huang, J. T. Appl. Clay Sci. 1999, 15, 51.   DOI   ScienceOn