• Title/Summary/Keyword: Surface Generation

Search Result 2,394, Processing Time 0.027 seconds

Tetrahedral Mesh Generation by Using the Advancing-Front Method and the Optimal Surface Triangular Mesh Generation Technique (전진경계기법과 최적 표면 삼각형 요소망 생성 기법을 이용한 사면체 요소망의 생성)

  • Lee M.C.;Joun M.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.138-147
    • /
    • 2006
  • A systematic approach to tetrahedral element or mesh generation, based on an advancing-front method and an optimal triangular mesh generation technique on the surface, is presented in this paper. The possible internal nodes are obtained by the octree-decomposition scheme. The initial tetrahedral mesh system is constructed by the advancing-front method and then it is improved by the quality improvement processes including mesh swapping and nodal smoothing. The approach is evaluated by investigating the normalized length, the normalized volume, the dihedral angle and the normalized quality

Demonstration Research of Photovoltaic System with Solar Reflectors (반사판을 이용한 태양광발전시스템 실증연구)

  • Kim, Yong-Sik;Kang, Gi-Hwan;Sim, Sang-Yong;Lee, Hoo-Rock;Lee, Jin-Seob;Hong, Jin-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.64-69
    • /
    • 2009
  • This paper aims at enhancing the electric production efficiency of photovoltaic(PV) system. The electrical power of PV system is proportional to light intensity on a PV module surface. In this paper, we apply two types of systems to enhance power generation efficiency. First, of all, concentring sunlight using specular surface and one-axis tracking system which traces the sun with vertical direction are applied in this project. From this, we analyze the fixed type method and power generation efficiency.

Wheel curve generation error of aspheric grinding in parallel grinding method (비구면 평행연삭에서의 휠구면형상 창성오차)

  • Hwang Yeon;Kuriyagawa T.;Lee Sun-Kyu
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.344-349
    • /
    • 2005
  • This paper presents a geometrical error analysis of wheel curve generation method for micro aspheric surface machining using parallel grinding method. In aspheric grinding, wheel wear in process is crucial parameter for profile error of the ground surface. To decrease wheel weal parallel grinding method is adopted. Wheel and work piece (Tungsten carbide) contact point changes during machining process. In truing process of the wheel radius is determined by the angle and distance between wheel and truer. Wheel radius error is predominantly affected by vertical deviation between the wheel rotation center and the truer center Simulation for vertical error and wheel radius error shows same tendency that expected by geometrical analysis. Experimental results show that the analysis of curve generation method matches with simulations and wheel radius errors.

  • PDF

Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • Lee, Sang-Jin;Park, Won-Kyu;Lee, Sang-Tae;Lee, Woo-Young;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Flaw Analysis Based Life Assessment of Welded Tubular Joint (결함해석에 기초한 배관용접부 수명평가)

  • Lee, Hyeong-Il;Han, Tae-Su;Jeong, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1331-1342
    • /
    • 2000
  • In power generation systems a variety of structural components typically operate at high temperature and pressure. Therefore a life assessment methodology accounting for gradual creep fracture is increasingly needed for these components. The most critical defects in such structure are generally found in the form of semi-elliptical surface cracks in the welded tubular joints. Therefore the analysis of a semi-elliptical surface crack in a plate or a shell is an important problem in engineering fracture mechanics. On this background, via shell/line-spring finite element analyses of such surface cracks in the welded T and L joints under various loadings, we investigate J-integral along the crack front We first develop T and L joints auto mesh generation program providing ABAQUS input file composed of shell/line-spring finite elements. We then further develop a T and L joints life assessment program based on the experimental creep crack growth law and auto mesh generation program in a graphical user interface format Finally the remaining life of T and L joints for various analytical parameters are assessed using the developed life assessment program.

A Study on Machining Effects on Residual Stress at Dissimilar Metal Weld Region (기계가공이 이종용접부의 잔류응력에 미치는 영향에 관한 연구)

  • Lee, Kyoung-Soo;Lee, Jeong-Geun;Lee, Seong-Ho;Park, Chi-Yong;Lee, Seung-Geon;Park, Jai-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.56-63
    • /
    • 2011
  • his paper aimed to understand the residual stress in the dissimilar metal welds of nuclear power plant. Two kinds of residual stress were considered, which caused by welding and machining. Residual stress due to mechanical machining was measured by hole-drilling technique and x-ray diffraction method for the SA508 and F316L. Weld residual stress at dissimilar metal weld between SA508 and F316L was evaluated by FEA. Residual stress profiles were obtained for the inside surface and through thickness of welds. Machining effect was also analyzed by FEA. According to the residual stress measurement, it was observed that mechanical machining can generate tensile stress on the surface of the test material. However, FEA results showed that mechanical machining did not increase the tensile stress on the surface of weld region. Further study with more elaborate measurement and numerical analysis is required to identify the effect of machining on residual stress in the dissimilar metal weld region.

Numerical Study on Spontaneous Combustion in Coal Stockpile (저탄장에서의 석탄 자연발화에 관한 수치 해석적 연구)

  • HONG, JINPYO;KIM, JAEKWAN;CHI, JUNHWA;PARK, SUKWOON;SEO, DONGGYUN;LEE, JINHYANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.721-728
    • /
    • 2017
  • In this work, an one-dimensional analysis on spontaneous combustion in a coal stockpile was conducted using a commercial software $gPROMS^{(R)}$ based on assumption suggested by Arioy and Akgun. According to them, it is assumed that there is temperature difference between the surface of coal particle and the gas surrounded around the particle, and it is also assumed that the velocity of the gas is constant and thus oxygen is fed to the stockpile with same velocity. The higher temperature zone is formed to the surface of the coal stockpile at the initial phase and it became deepen as time is taken. Finally it was found that the temperature difference between coal particle and the gas was calculated as $57^{\circ}C$ and spontaneous combustion have not been occurred during 6 months since coal was piled in the stock.

Plane Surface Generation with a Flat End Mill (평 엔드밀을 이용한 평면가공에서의 가공면 형성기구)

  • Ryu, Si-Hyeong;Kim, Min-Tae;Choe, Deok-Gi;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF

Automatic Surface Generation for Extrusion Die of Arbitrarily Shaped Section using B-spline Surfaces and Scalar Field Theory (B-스플라인 곡면과 스칼라장 이론을 이용한 임의의 형상의 압출금형 곡면의 자동생성)

  • 임종훈;김광혁;유동진;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • A new approach for the design of extrusion die surface of arbitrarily shaped section is presented. In order to generate the extrusion die surface. an automatic surface construction method based on B-spline surface and scalar field theory is proposed. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u- and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections. To verify the validity and effectiveness of the proposed method, automatic surface generation is carried out for extrusion dies of arbitrarily shaped sections.

Generation of High Pretilt Angle for Nematic Liquid Crystal on Blended Polyimide Surfaces Containing Fluorine Moiety (Fluorine 계열의 폴리머를 함유한 복합 폴리이미드 표면에서의 네마틱 액정의 고 프리틸트 발생)

  • Hwang, Jeoung-Yeon;Lee, Kyung-Jun;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.949-952
    • /
    • 2002
  • The mechanisms of pretilt angle generation for a nematic liquid crystal (NLC) with negative dielectric anisotropy on the blended polyimide (PI) surface containing trifluoromethyl moiety was studied. High LC pretilt angle on the blended polymer surface with F3 was measured and the pretilt angle increased with rubbing strength. However, the low LC pretilt angle on the blended polymer surface with F1 and F2 was measured. The high LC pretilt angle generated is attributable to trifluoromethyl moiety in backbone structure on the blended PI surface. Therefore, the high pretilt angle of NLC can be achieved by using the blended polymer surface.

  • PDF