• Title/Summary/Keyword: Surface Finishing Time of Concrete

Search Result 17, Processing Time 0.031 seconds

A Study on the Properties of Successive Pours Surface Using the Concrete Surface Finishing Agent (콘크리트 면처리제를 이용한 이어치기면의 역학적 특성에 관한 연구)

  • 박유신;김영근;장성주;서치호;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.723-728
    • /
    • 1997
  • The aim of this study is to define the physical properties of successive pours surfaces of concrete by various surface treatment methods with the laps of time. This paper is intended to study on the physical properties (the compressive strength, the tensile strength, the shear bonding strength and the bending strength) of the concrete successive pours surface used concrete surface finishing agent.

  • PDF

Feasibility Study of Modified Durometer to Evaluate Setting Time of the Concrete (콘크리트의 응결시간 판정시 개량형 듀로미터의 사용 가능성 분석)

  • Han, Cheon-Goo;Han, Min-Cheol;Shin, Yong-Sub
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.433-440
    • /
    • 2020
  • In this study, a new type of Durometer was invented by modifying the currently used Durometer with the hemisphere shaped needle to columnar shaped needle. The aim of the study is, hence, to provide the feasibility of the advanced Durometer for assessing setting time of the concrete. Generally, the finishing of concrete surface should be conducted to secure the smooth surface, improve the permeability, and prevent the plastic shrinkage cracking. Although this surface finishing work should be conducted during the plastic phase between initial and final setting, currently in practical situations, the timing of starting the finishing work was determined by the sense of the worker. To improve this situation, Kato Junji suggested to use the hemisphere and needle shaped Durometers to determine the initial and final setting time, respectively. However, in this case, there are difficulties of using two different Durometers and of occurring failure of the Durometer due to the intruded cement paste. To prove the feasibility of new typed Durometer, setting time and surface hardness were evaluated by applying for the concrete with various replacing ratios of fly-ash and coal gasification slag as an aggregate.

Setting Time Evaluation of High Flowable Ternary Concrete Mix Using Durometer (듀로미터를 이용한 3성분계 고유동 콘크리트의 응결시간 추정)

  • Han, Min-Cheol;Lee, yuk-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • The aim of the research is to evaluate the feasibility of durometer for assessing setting time of the concrete by comparing it with the currently used proctor penetration test method to improve the surface finishing timing determining method generally determined based on the experience of the worker. As a research result, the correlation between suggesting method using durometer with currently used proctor penetration test method was high enough. Hence, on the surface of the concrete, the initial setting time and the final setting time could be designated as 41 HD with C-type, and 11 HD with D-type, respectively. Therefore, the durometer can be used as a portable setting time evaluation device with the easiness of handling and measuring for determining concrete surface finishing timing quantitatively.

A Study on the Estimation of Setting Time for High Strength Concrete Using Durometer (개량형 Durometer를 이용한 고강도 콘크리트의 응결시간 추정 가능성 분석)

  • Sin, Se-Jun;Han, Soo-Hwan;Hyun, Seung-Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.87-88
    • /
    • 2020
  • The purpose of this study is to explore the possibility of estimating optimum surface finish time of the fresh concrete placed at the job site by applying a surface hardness test meter(Durometer). Tests are carried out by measuring and comparing the Penetration resistance test and hardness test by Durometer. Penetration resistance tester and improved Durometer are similar, but the higher the temperature, the higher the setting time, and the higher the correlation was shown. When the hardness value of the improved Durometer is about 50 HD, it is found that the initial and 80 HD represent the end. It is expected that this will be useful in determining the finish time of the surface at the actual site.

  • PDF

A Study on the Estimation of Setting Time for Concrete Using Durometer (개량형 Durometer를 이용한 콘크리트의 응결시간 추정 가능성 분석)

  • Sin, Se-Jun;Han, Soo-Hwan;Hyun, Seung-Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.169-170
    • /
    • 2020
  • The purpose of this study is to explore the possibility of estimating optimum surface finish time of the fresh concrete placed at the job site by applying a surface hardness test meter(Durometer). Tests are carried out by measuring and comparing the Penetration resistance test and hardness test by Durometer. Penetration resistance tester and improved Durometer are similar, but the higher the temperature, the higher the setting time, and the higher the correlation was shown. When the hardness value of the improved Durometer is about 50 HD, it is found that the initial and 80 HD represent the end. It is expected that this will be useful in determining the finish time of the surface at the actual site.

  • PDF

Estimation of Setting Time Applying Setting Estimator for AI Finishing Robot System Depending on Water-Cement Ratio (AI기반 콘크리트 마감 자동화 시스템용 응결추정계의 물시멘트비에 따른 응결추정 평가)

  • Park, Jae-Woong;Jeong, Jun-Taek;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.17-18
    • /
    • 2023
  • This study aims to compare the hardness value development characteristics according to the water-cement ratio during a series of experiments to develop a setting estimator for an AI-based concrete finishing automation system. For the test variables, water-cement ratios are varied with 30, 40 and 50%. Proctor penetration test and surface hardness test by setting time estimator are conducted to estimate the setting time. For the effect of water-cement ratios, they did not affect the surface hardness either, while initial set time and final set time are not constant with water-cement ratios.

  • PDF

Estimation of the Setting Time of the High Flowing Concrete Using Durometer (Durometer를 이용한 고유동 콘크리트의 응결시간 판정 방법)

  • Han, Min-Cheol;Shin, Yong-Sub;Han, In-Deok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.143-150
    • /
    • 2019
  • The purpose of this study was to propose how to determine the setting time related to the determination of the surface finish working time of the concrete using a Durometer, which is used as a rubber hardness meter. Two different types of Durometer were used to measure the setting time of the concrete. High flowing concrete with 40% of water to binder ratio was fabricated maintaining $600{\pm}100mm$ of slump flow. The test results indicated that the application of the Durometer resulted in a high correlation with the penetration resistance tester in both mortar and concrete. When measuring the setting time of the concrete, with properly used with Durometer, evaluation of the setting time of the concrete can be available. Therefore, it is thought that the measurement of the final set of the durometer C type can be useful to decide the limit time of the finishing operation and the time of the rejuvenation of the curing process by measuring the finishing set at 40 HD in the case of the initial set and 10 HD in the case of D type.

A Study on Field Application of 150MPa Ultra Strength Surface-Exposed Concrete (150MPa급 초고강도 노출콘크리트의 현장적용에 관한 연구)

  • Kong, Tae-Woong;Lee, Soo-Hyung;Jang, Jae-Hwan;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.989-992
    • /
    • 2008
  • In this paper, we are presenting a case that integrates ultra high strength concrete(150MPa) with surface-exposed concrete. Ahead of the field application, we carried out laboratory experiment and B/P Test for a basic property of concrete(slump flow, air content, 50cm flow time, elapse time change and compression strength) and productivity. The next, we conducted Mock-up Test using simulation specimen to evaluate infilling, surface-finishing and hydration heat of concrete. We had satisfactory results for a basic property and hydration heat of concrete. However at the time of field application, it was occurred rupture of formwork because of high lateral pressure of concrete, and then formwork was reinforced and case-in-place time was adjusted. And regardless of low and high frequency vibration, it occurred to surface-pockmark. In case that applies ultra high strength concrete to surface-exposed concrete, we estimate that it is important of systematic management and improvement of construction.

  • PDF

High Temperature Properties of Fire Protection Materials Using Fly Ash and Meta-Kaolin (Fly Ash 및 Meta-Kaolin을 활용한 내화성 마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Do, Jeong-Yun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.223-231
    • /
    • 2010
  • The serious issue of tall building is to ensure the fire-resistance of high strength concrete. The fire resistant finishing method is necessarily essential in order to satisfy the fire resistance time of 3 h required by the law. The fire resistant finishing method is installed by applying a fire resistant material as a method of shotcrete or a fire resistant board to high strength concrete surface. This method can reduce the temperature increase of the reinforcement embedded in high strength concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of inorganic alumino-silicate compounds including the inorganic admixture such as fly ash and meta-kaolin as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. The study results show that the fire resistant finishing material composed of fly ash and meta-kaolin has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Inorganic compounds composed of fly ash and meta-kaolin is evaluated to be very effective as the fire resistance material for finishing to protect the concrete substrate by the reason of those simplicity in both application and manufacture. The additional study about the adhesion in the interface with concrete substrate is necessary for the purpose of the practical application.

The Study for the Air Bubble Deterioration of Combined High Flowing Self-Compacting Concrete (병용계 고유동 자기충전콘크리트의 기포저감을 위한 연구)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ruy, Deug-Hyun;Jeong, Jae-Gwon;Kang, Hyun-Jin;Lee, Jae-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.449-452
    • /
    • 2008
  • This study is to manufacture HSCC (High flowing Self-Compacting Concrete) be able to construction without vibration & hardening, and it is stable according to the change of the surface number of aggregate and to examine the factor of reduction occurred before after hardening through the indoor experiment. It is essential to use of the thickener to increase the viscosity in the combined HSCC. In this result, it make more bubbles than HSCC of pulverulent body. The result of study has shown, through the surface air bubble by not passed air bubbles within concrete after hardening, It has bad effect in not only appearance of structures but strength & duration. It is the experiment for air bubble of concrete according to the types of aggregate (fine aggregate), mixing time of concrete, exfoliation, material of model form and so that reduce the air bubble of combined HSCC. Experiments have shown, the effect of exfoliation was bigger than the effect of form for the performance of surface finishing of combined HSCC after hardening according to the exfoliation or material of model form and the opaque guris has good condition of finishing.

  • PDF