• 제목/요약/키워드: Surface Deformations

검색결과 211건 처리시간 0.029초

리그변형을 고려한 세일 성능의 유체-구조 연성해석 (FSI Simulation of the Sail Performance considering Standing Rig Deformation)

  • 박세라;유재훈
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.421-430
    • /
    • 2018
  • The shape of a yacht sail made of thin fabric materials is easily deformed by wind speed and direction and it is affected by the deformation of the standing rig such as mast, boom, shrouds, stays and spreaders. This deformed sail shape changes the air flow over the sail, it makes the deformation of the sail and the rig again. To get a sail performance accurately these interactive behavior of sail system should be studied in aspects of the aerodynamics and the fluid-structure interaction. In this study aerodynamic analysis for the sail system of a 30 feet sloop is carried out and the obtained dynamic pressure on the sail surface is applied as the loading condition of the calculation to get the deformations of the sail shape and the rig. Supporting forces by rig are applied as boundary condition of the structure deformation calculations. And the characteristics of the air flow and the dynamic pressure over the deformed sail shape is investigated repeatedly including the lift force and the location of CE.

Application of Artificial Neural Networks to Predict Dynamic Responses of Wing Structures due to Atmospheric Turbulence

  • Nguyen, Anh Tuan;Han, Jae-Hung;Nguyen, Anh Tu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.474-484
    • /
    • 2017
  • This paper studies the applicability of an efficient numerical model based on artificial neural networks (ANNs) to predict the dynamic responses of the wing structure of an airplane due to atmospheric turbulence in the time domain. The turbulence velocity is given in the form of a stationary Gaussian random process with the von Karman power spectral density. The wing structure is modeled by a classical beam considering bending and torsional deformations. An unsteady vortex-lattice method is applied to estimate the aerodynamic pressure distribution on the wing surface. Initially, the trim condition is obtained, then structural dynamic responses are computed. The numerical solution of the wing structure's responses to a random turbulence profile is used as a training data for the ANN. The current ANN is a three-layer network with the output fed back to the input layer through delays. The results from this study have validated the proposed low-cost ANN model for the predictions of dynamic responses of wing structures due to atmospheric turbulence. The accuracy of the predicted results by the ANN was discussed. The paper indicated that predictions for the bending moments are more accurate than those for the torsional moments of the wing structure.

FEM investigation of SFRCs using a substepping integration of constitutive equations

  • Golpasand, Gholamreza B.;Farzam, Masood;Shishvan, Siamak S.
    • Computers and Concrete
    • /
    • 제25권2호
    • /
    • pp.181-192
    • /
    • 2020
  • Nowadays, steel fiber reinforced concretes (SFRCs) are widely used in practical applications. Significant experimental research has thus been carried out to determine the constitutive equations that represent the behavior of SFRCs under multiaxial loadings. However, numerical modelling of SFRCs via FEM has been challenging due to the complexities of the implementation of these constitutive equations. In this study, following the literature, a plasticity model is constructed for the behavior of SFRCs that involves the Willam-Warnke failure surface with the relevant evolution laws and a non-associated flow rule for determining the plastic deformations. For the precise (yet rapid) integration of the constitutive equations, an explicit substepping scheme consisting of yield intersection and drift correction algorithms is employed and thus implemented in ABAQUS via UMAT. The FEM model includes various material parameters that are determined from the experimental data. Three sets of parameters are used in the numerical simulations. While the first set is from the experiments that are conducted in this study on SFRC specimens with various contents of steel fibers, the other two sets are from the experiments reported in the literature. The response of SFRCs under multiaxial compression obtained from various numerical simulations are compared with the experimental data. The good agreement between numerical results and the experimental data indicates that not only the adopted plasticity model represents the behavior of SFRCs very well but also the implemented integration scheme can be employed in practical applications of SFRCs.

Concrete beams submitted to various moisture environments

  • Multon, S.;Seignol, J.F.;Toutlemonde, F.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.71-83
    • /
    • 2006
  • This paper deals with the effects of various moisture environments on the structural behavior of concrete beams. The presented results were obtained within a large experimental program carried out at the Laboratoire Central des Ponts et Chauss$\acute{e}$es (LCPC), with Electricit$\acute{e}$ de France (EDF) as a partner. The aim of this paper is to point out and to quantify the strains resulting from unidirectional moisture conditions: a drying gradient applied during 14 months, followed by the re-wetting of the dried surface during 9 months. The effect of reinforcement on the shrinkage and on the deformation due to water absorption is pointed out. Moreover, a lot of tests on companion cylinders and prisms were carried out to determine the mechanical characteristics of the material and help checking analysis methods. The paper focuses on numerous measurements obtained during the 23 months on one plain concrete beam and one reinforced concrete beam: variation of water content, followed by precise weighing and gammadensitometry, relative humidity measurements, local and global deformations in the three directions and deflection of the beams. Thus, the effects of drying and water absorption on the behavior of concrete structures are documented and analyzed in comparison with existing representation of water diffusion.

Multi-scale modelling of the blood chamber of a left ventricular assist device

  • Kopernik, Magdalena;Milenin, Andrzej
    • Advances in biomechanics and applications
    • /
    • 제1권1호
    • /
    • pp.23-40
    • /
    • 2014
  • This paper examines the blood chamber of a left ventricular assist device (LVAD) under static loading conditions and standard operating temperatures. The LVAD's walls are made of a temperature-sensitive polymer (ChronoFlex C 55D) and are covered with a titanium nitride (TiN) nano-coating (deposited by laser ablation) to improve their haemocompatibility. A loss of cohesion may be observed near the coating-substrate boundary. Therefore, a micro-scale stress-strain analysis of the multilayered blood chamber was conducted with FE (finite element) code. The multi-scale model included a macro-model of the LVAD's blood chamber and a micro-model of the TiN coating. The theories of non-linear elasticity and elasto-plasticity were applied. The formulated problems were solved with a finite element method. The micro-scale problem was solved for a representative volume element (RVE). This micro-model accounted for the residual stress, a material model of the TiN coating, the stress results under loading pressures, the thickness of the TiN coating and the wave parameters of the TiN surface. The numerical results (displacements and strains) were experimentally validated using digital image correlation (DIC) during static blood pressure deformations. The maximum strain and stress were determined at static pressure steps in a macro-scale FE simulation. The strain and stress were also computed at the same loading conditions in a micro-scale FE simulation.

A Study on the Crust Deformation in and Around Korean Peninsula Using DGPS Data

  • Cho, Jin-Dong;Park, Jun Ku
    • 지구물리
    • /
    • 제9권3호
    • /
    • pp.151-158
    • /
    • 2006
  • Highly accurate surface velocity estimation using modern geodetic techniques plays very important role in the geological and geophysical interpretation. Researches with GPS are ongoing in many countries of the world. This study aims to estimate the amount of crustal deformation and the direction of deformation in the Korean Peninsula and in its neighbor. We used GAMIT that is a comprehensive GPS analysis package developed at MIT. Then, a Global Kalman filter called GLOBK is used to combine the results from GAMIT and to estimate the relative and absolute velocity vector for the crustal deformations. To estimate station velocity accuracy and reliably, it is extremely important to pay great attention to the reference frame. Firstly, using the Suwon (SUWN) of Eurasian plate as main frame, we estimate the relative amount of crustal deformation and a direction of Eurasian plate and North American plate, Secondly, using ITRF 2000 as main frame, we estimate the absolute crustal deformation of Eurasian plate and North American plate. The continent of Eurasian where has the Korean Peninsula deforms 33.36 mm per year to East-Southeast (ESE), and Japanese Tsukuba (TSKB) in North American plate deforms to South-Southwest (SSW). Finally, the Korean Peninsula is approaching the Japanese Island and the rate of horizontal crustal deformation between the Suwon and the Tsukuba is about 31.98 mm per year in the moving direction of N85.9oW (274.1o) for the past three years.

  • PDF

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin;Kong, Xiangzhe;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1575-1588
    • /
    • 2019
  • Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

Mirrors and Optomechanical Structures Design and Analysis for Linear Astigma-tism Free Three Mirror System (LAF-TMS)

  • Park, Woojin;Hammar, Arvid;Lee, Sunwoo;Chang, Seunghyuk;Kim, Sanghyuk;Jeong, Byeongjoon;Kim, Geon Hee;Kim, Daewook;Pak, Soojong
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.55.4-56
    • /
    • 2018
  • Linear Astigmatism Free - Three Mirror System (LAF-TMS) is the linear astigmatism free off-axis wide field telescope with D = 150 mm, F/3.3, and $FOV=5.51^{\circ}{\times}4.13^{\circ}$. We report the design and analysis results of its mirrors and optomechanical structures. Tolerance allowance has been analyzed to the minimum mechanical tolerance of ${\pm}0.05mm$ that is reasonable tolerance for fabrication and optical alignment. The aluminum mirrors are designed with mounting flexure features for the strain-free mounting. From Finite Element Analysis (FEA) results of mounting torque and self-weight, we expect 33 - 80 nm RMS mirror surface deformations. Shims and the L-bracket are mounted between mirrors and the mirror mount for optical alignment. The mirror mount is designed with four light-weighted mechanical parts. It can stably and accurately fix mirrors, and it also suppresses some of stray light.

  • PDF

Thermo-optical Analysis and Correction Method for an Optical Window in Low Temperature and Vacuum

  • Ruoyan Wang;Ruihu Ni;Zhishan Gao;Lingjie Wang;Qun Yuan
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.213-221
    • /
    • 2023
  • The optical window, as a part of the collimator system, is the connector between the outside light source and the optical system inside a vacuum tank. The temperature and pressure difference between the two sides of the optical window cause not only thermoelastic deformation, but also refractive-index irregularities. To suppress the influence of these two changes on the performance of the collimator system, thermo-optical analysis is employed. Coefficients that characterize the deformations and refractive-index distributions are derived through finite-element analysis, and then imported into the collimator system using a user-defined surface in ZEMAX. The temperature and pressure difference imposed on the window seriously degrade the system performance of the collimator. A decentered and tilted lens group is designed to correct both field aberrations and the thermal effects of the window. Through lens-interval adjustment of the lens group, the diffraction-limited performance of the collimator can be maintained with a vacuum level of 10-5 Pa and inside temperature ranging from -100 ℃ to 20 ℃.

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.