Browse > Article
http://dx.doi.org/10.12989/cac.2020.25.2.181

FEM investigation of SFRCs using a substepping integration of constitutive equations  

Golpasand, Gholamreza B. (Department of Structural Engineering, University of Tabriz)
Farzam, Masood (Department of Structural Engineering, University of Tabriz)
Shishvan, Siamak S. (Department of Structural Engineering, University of Tabriz)
Publication Information
Computers and Concrete / v.25, no.2, 2020 , pp. 181-192 More about this Journal
Abstract
Nowadays, steel fiber reinforced concretes (SFRCs) are widely used in practical applications. Significant experimental research has thus been carried out to determine the constitutive equations that represent the behavior of SFRCs under multiaxial loadings. However, numerical modelling of SFRCs via FEM has been challenging due to the complexities of the implementation of these constitutive equations. In this study, following the literature, a plasticity model is constructed for the behavior of SFRCs that involves the Willam-Warnke failure surface with the relevant evolution laws and a non-associated flow rule for determining the plastic deformations. For the precise (yet rapid) integration of the constitutive equations, an explicit substepping scheme consisting of yield intersection and drift correction algorithms is employed and thus implemented in ABAQUS via UMAT. The FEM model includes various material parameters that are determined from the experimental data. Three sets of parameters are used in the numerical simulations. While the first set is from the experiments that are conducted in this study on SFRC specimens with various contents of steel fibers, the other two sets are from the experiments reported in the literature. The response of SFRCs under multiaxial compression obtained from various numerical simulations are compared with the experimental data. The good agreement between numerical results and the experimental data indicates that not only the adopted plasticity model represents the behavior of SFRCs very well but also the implemented integration scheme can be employed in practical applications of SFRCs.
Keywords
steel fiber reinforced concrete (SFRC); finite element method (FEM); concrete constitutive models; nonlinear analysis; software development and applications;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Imran, I. and Pantazopoulou, S. J. (2001), "Plasticity model for concrete under triaxial compression", J. Eng. Mech., 127(3), 281-290. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(281).   DOI
2 Jiang, J.F., Xiao, P.C. and Li, B.B. (2017), "True-triaxial compressive behaviour of concrete under passive confinement", Constr. Build. Mater., 156, 584-598. https://doi.org/10.1016/j.conbuildmat.2017.08.143.   DOI
3 Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", ACI J. Proc., 66(8), 656-666.
4 Lan, S. and Guo, Z. (1997), "Experimental investigation of multiaxial compressive strength of concrete under different stress paths", ACI Mater. J., 94(5), 427-434.
5 Lee, S., Park, Y. and Abolmaali, A. (2019), "Investigation of flexural toughness for steel-and-synthetic-fiber-reinforced concrete pipes", Struct., 19, 203-211. https://doi.org/10.1016/j.istruc.2018.12.010.   DOI
6 Liang, X. and Wu, C. (2018), "Meso-scale modelling of steel fibre reinforced concrete with high strength", Constr. Build. Mater., 165, 187-198. https://doi.org/10.1016/j.conbuildmat.2018.01.028.   DOI
7 Lu, X. and Hsu, C.T.T. (2006), "Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression", Cement Concrete Res., 36(9), 1679-1685. https://doi.org/10.1016/j.cemconres.2006.05.021.   DOI
8 Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).   DOI
9 Othman, H. and Marzouk, H. (2018), "Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads", Int. J. Impact Eng., 114, 20-31. https://doi.org/10.1016/j.ijimpeng.2017.12.013.   DOI
10 Perumal, R. (2014), "Performance and modeling of high-performance steel fiber reinforced concrete under impact loads", Comput. Concrete, 13(2), 255-270. https://doi.org/10.12989/cac.2014.13.2.255.   DOI
11 Sloan, S.W. (1987), "Substepping schemes for the numerical integration of elastoplastic stress-strain relations", 24(5), 893-911. https://doi.org/10.1002/nme.1620240505.   DOI
12 Amin, A., Foster, S.J., Gilbert, R.I. and Kaufmann, W. (2017), "Material characterisation of macro synthetic fibre reinforced concrete", Cement Concrete Compos., 84, 124-133. https://doi.org/10.1016/j.cemconcomp.2017.08.018.   DOI
13 Ansari, F. and Li, Q. (1998), "High-strength concrete subjected to triaxial compression", ACI Mater. J., 95(6), 747-755.
14 Poorhoseina, R. and Nematzadeh, M. (2018), "Mechanical behavior of hybrid steel-PVA fibers reinforced reactive powder concrete", Comput. Concrete, 21(2), 167-179. https://doi.org/10.12989/cac.2018.21.2.167.   DOI
15 Ren, Y., Yu, Z., Huang, Q. and Ren, Z. (2018), "Constitutive model and failure criterions for lightweight aggregate concrete: A true triaxial experimental test", Constr. Build. Mater., 171, 759-769. https://doi.org/10.1016/j.conbuildmat.2018.03.219.   DOI
16 Rodrigues, E.A., Manzoli, O.L., Bitencourt, L.A.G., Bittencourt, T.N. and Sanchez, M. (2018), "An adaptive concurrent multiscale model for concrete based on coupling finite elements", Comput. Meth. Appl. Mech. Eng., 328, 26-46. https://doi.org/10.1016/j.cma.2017.08.048.   DOI
17 Sloan, S.W., Abbo, A.J. and Sheng, D. (2001), "Refined explicit integration of elastoplastic models with automatic error control", Eng. Comput., 18(1/2), 121-194. https://doi.org/10.1108/02644400110365842.   DOI
18 Smolcic, Z. and Ozbolt, J. (2017), "Meso scale model for fiber-reinforced-concrete: Microplane based approach", Comput. Concrete, 17(4), 375-385. https://doi.org/10.12989/cac.2017.19.4.375.   DOI
19 Swaddiwudhipong, S. and Seow, P.E.C. (2006), "Modelling of steel fiber-reinforced concrete under multi-axial loads", Cement Concrete Res., 36(7), 1354-1361. https://doi.org/10.1016/j.cemconres.2006.03.008.   DOI
20 Pantazopoulou, S.J. and Zanganeh, M. (2001), "Triaxial tests of fiber-reinforced concrete", J. Mater. Civil Eng., 13(5), 340-348. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:5(340).   DOI
21 Bazant, Z.P., Caner, F.C., Carol, I., Adley, M.D. and Akers, S.A. (2000), "Microplane model M4 for concrete. I: Formulation with work-conjugate deviatoric stress", J. Eng. Mech., 126(9), 944-953. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(944).   DOI
22 Balaguru, P.N. and Shah, S.P. (1992), Fiber-Reinforced Cement Composites, McGraw-Hill. the University of Michigan.
23 Bao, J., Wang, L., Zhang, Q., Liang, Y., Jiang, P. and Song, Y. (2018), "Combined effects of steel fiber and strain rate on the biaxial compressive behavior of concrete", Constr. Build. Mater., 187, 394-405. https://doi.org/10.1016/j.conbuildmat.2018.07.203.   DOI
24 Barros, J.A., Gouveia, A.V. and Azevedo, A.F. (2011), "Crack constitutive model for the prediction of punching failure modes of fiber reinforced concrete laminar structures", Comput. Concrete, 8(6), 735-755. https://doi.org/10.12989/cac.2011.8.6.735.   DOI
25 Chen, W.F. (2007), Plasticity in Reinforced Concrete, J. Ross Publishing.
26 Bitencourt, L.A.G., Manzoli, O.L., Bittencourt, T.N. and Vecchio, F.J. (2019), "Numerical modeling of steel fiber reinforced concrete with a discrete and explicit representation of steel fibers", Int. J. Solid. Struct., 159, 171-190. https://doi.org/10.1016/j.ijsolstr.2018.09.028.   DOI
27 Blanco, A., Pujadas, P., Cavalaro, S., de la Fuente, A. and Aguado, A. (2014), "Constitutive model for fibre reinforced concrete based on the Barcelona test", Cement Concrete Compos., 53, 327-340. https://doi.org/10.1016/j.cemconcomp.2014.07.017.   DOI
28 Candappa, D., Sanjayan, J. and Setunge, S. (2001), "Complete triaxial stress-strain curves of high-strength concrete", J. Mater. Civil Eng., 13(3), 209-215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209).   DOI
29 Zhang, Y., Zhao, K., Li, Y., Gu, J., Ye, Z. and Ma, J. (2018), "Study on the local damage of SFRC with different fraction under contact blast loading", Comput. Concrete, 22(1), 63-70. https://doi.org/10.12989/cac.2018.22.1.063.   DOI
30 William, K.J. and Warnke, E.P. (1975), "Constitutive model for the triaxial behavior of concrete", Int. Assoc. Bridge Struct. Eng. Pr., 19, 1-30.
31 Chi, Y., Xu, L. and Yu, H.S. (2014), "Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete using a non-associated plasticity and its numerical implementation", Compos. Struct., 111, 497-509. https://doi.org/10.1016/j.compstruct.2014.01.025.   DOI
32 Chen, W.F. and Han, D.J. (2012), Plasticity for Structural Engineers, Springer, New York.
33 Chern, J.C., Yang, H.J. and Chen, H.W. (1993), "Behavior of steel fiber reinforced concrete in multiaxial loading", ACI Mater. J., 89(1), 32-40.
34 Chi, Y., Xu, L. and Yu, H.S. (2013), "Plasticity model for hybrid fiber-reinforced concrete under true triaxial compression", J. Eng. Mech., 140(2), 393-405. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000659.   DOI
35 Chi, Y., Xu, L. and Zhang, Y. (2012), "Experimental study on hybrid fiber-reinforced concrete subjected to uniaxial compression", J. Mater. Civil Eng., 26(2), 211-218. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000764.   DOI
36 Farnam, Y., Moosavi, M., Shekarchi, M., Babanajad, S.K. and Bagherzadeh, A. (2010), "Behaviour of Slurry Infiltrated Fibre Concrete (SIFCON) under triaxial compression", Cement Concrete Res., 40(11), 1571-1581. https://doi.org/10.1016/j.cemconres.2010.06.009.   DOI
37 Chi, Y., Yu, M., Huang, L. and Xu, L. (2017), "Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity", Eng. Struct., 148, 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039.   DOI
38 Chun, B. and Yoo, D.Y. (2019), "Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete", Compos. Part B: Eng., 162, 344-360. https://doi.org/10.1016/j.compositesb.2018.11.026.   DOI
39 Dowell, M. and Jarratt, P. (1972), "The "Pegasus" method for computing the root of an equation", BIT Numer. Math., 12(4), 503-508. https://doi.org/10.1007/bf01932959.   DOI
40 Grassl, P., Lundgren, K. and Gylltoft, K. (2002), "Concrete in compression: a plasticity theory with a novel hardening law", Int. J. Solid. Struct., 39(20), 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0.   DOI
41 Gul, M., Bashir, A. and Naqash, J. A. (2014), "Study of modulus of elasticity of steel fiber reinforced concrete", Int. J. Eng. Adv. Technol., 3(4), 304-309.
42 Guo, Z. (1997), The Strength and Deformation of Concrete-Experimental Results and Constitutive Relationship, Tsinghua University Press, Beijing.
43 Han, J., Zhao, M., Chen, J. and Lan, X. (2019), "Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete", Constr. Build. Mater., 209, 577-591. https://doi.org/10.1016/j.conbuildmat.2019.03.086.   DOI
44 Hibbit, D., Karlsson, B. and Sorenson, P. (2005), ABAQUS Reference Manual 6.7, ABAQUS Inc. Pawtucket.