• Title/Summary/Keyword: Surface Conditions

Search Result 10,011, Processing Time 0.038 seconds

Remediation of Heavy Metal Contaminated Groundwater by Using the Biocarrier with Dead Bacillus sp. B1 and Polysulfone (Bacillus sp. B1 사균과 Polysulfone으로 이루어진 미생물 담체를 이용한 중금속 오염 지하수 정화)

  • Lee, Min-Hee;Lee, Ji-Young;Wang, Soo-Kyun
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.555-564
    • /
    • 2010
  • Remediation process by using the bio-carrier (beads) with dead Bacillus sp. B1 and polysulfone was investigated for heavy metal contaminated groundwater. Sorption batch experiments using the bio-carrier were performed to quantify the heavy metal removal efficiencies from the contaminated solution. The analyses using SEM/EDS and TEM for the structure and the characteristic of precipitates on/inside the beads were also conducted to understand the sorption mechanism by the bio-carrier. Various amounts of freeze-dried dead Bacillus sp. B1 were mixed with polysulfone + DMF(N,N-dimethylformamide) solution to produce the bio-carrier (beads; less than 2mm in diameter) and 5% of Bacillus sp. B1 in the bio-carrier was optimal for Pb removal in the solution. The removal efficiency ratings of the bio-carrier for Pb, Cu and Cd were greater than 80% after adding 2g of bio-carrier in 50ml of aqueous solution (<10mg/L of each heavy metal concentration). Reaction time of the bio-carrier was very fast and most of the sorption reaction for heavy metals were completed within few hours. Batch experiments were duplicated at various pH conditions of aqueous solutions and Cu and Pb removal efficiencies highly maintained at wide pH ranges (pH 2-12), suggesting that the bio-carrier can be useful to clean up the acidic waste water such as AMD. From SEM/EDS and TEM analyses, it was observed that the bio-carrier was spherical shape and was overlapped by many porous layers. During the sorption experiment, Pb was crystallized on the surface of porous layers and also was mainly concentrated at the boundary of Bacillus sp. B1 stroma and polysulfone substrate, showing that the main mechanism of the bio-carrier to remove heavy metals is the sorption on/inside of the bio-carriers and the bio-carriers are excellent biosorbents for the removal of heavy metal ions from groundwater.

Degumming of Silk by Calcium hydroxide (Calcium Hydroxide에 의한 Silk의 정련)

  • 정양숙;김정호;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.45 no.1
    • /
    • pp.34-45
    • /
    • 2003
  • Silk was treated with calcium hydroxide for degumming at different treatment times, temperatures and Ca(OH)$_2$ concentration to optimize degumming conditions in this thesis. After degumming, soluble and insoluble sericin were seperated and then the soluble sericin was characterized by measuring the average degree of polymerization (D.P.), lysinoalanine (LAL) content, DSC, and by amino acid analysis. And degummed silk fibroin was characterized by measuring tenacity and SEM. Degumming loss was increased by increasing the treatment time and temperature until about 30 minutes. After then, a slight difference was found along with treatment times at the Ca(OH)$_2$ concentrations of 0.07% and 0.1% solutions. After degumming, insoluble sericin ratio on degumming solution was increased by increasing treatment temperature at Ca(OH)$_2$ 0.04% solution. At the concentration Ca(OH)$_2$ of 0.07%, a soluble ratio was almost 100% regardless of treatment time and temperature. At the beginning of treatment, insoluble ratio was high at Ca(OH)$_2$ 0.1% solution but it was decreased by increasing treatment time. At the Ca(OH)$_2$ concentration of 0.04%, D.P. of soluble sericin was maintained as a constant value of 10 at 100$^{\circ}C$ although treatment time was increased. However, at 80$^{\circ}C$ and 90$^{\circ}C$, it was hard to prepare a soluble sericin having a constant D.P. by increasing treatment time. At the Ca(OH)$_2$ concentration of 0.07%, D.P. was almost 10 irrespective of treatment temperature and time. Soluble sericins with high D.P. of 20∼30 were obtained at 0.1% and 100$^{\circ}C$. LAL was not detected in soluble sericin. As the results of amino acid analysis, it showed that Ca(OH)$_2$ degumming reduced the contents of hydroxy amino acids like Ser., Thr. and Tyr. In DSC analysis of soluble sericin, endothermic peak by thermal deformation and pyrolysis showed at 189$^{\circ}C$ and at 299$^{\circ}C$, respectively. The tenacities of degummed silk were 15∼30% lower than that of raw silk. And it was decreased with increasing treatment time. From the morphological study, the thickness of degummed silk fibroin became thinner by increasing degumming loss. The roughness of a silk fibroin surface was appeared as treatment concentration was increased.

Study on Effect of Convection Current Aeration System on Mixing Characteristics and Water Quality of Reservoir (대류식 순환장치의 저수지수체 유동특성 및 수질영향)

  • Lee, Yo-Sang;Lee, Kwang-Man;Koh, Deok-Koo;Yum, Kyung-Taek
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.85-94
    • /
    • 2009
  • This study examines the operational effectiveness of a Convection Current Aeration System (CCAS) in reservoir. CCAS was run from June, 2008 when the thermocline begun forming in the reservoir. This paper reviews the influence of stratification, dissolved oxygen dynamics and temperature in the lake's natural state from June to October 2008. The survey was done on a week basis. Upwelling flow effects a radius of $7{\sim}10m$ at a surface directly and was irrelevant to the strength of thermocline. On the other hand, it was affected the number of working days, and strength of thermocline at vertical profiles of the reservoir. Longer CCAS run, the deeper was the vertical direct flow area. However it didn't break the thermocline during summer season of 2008. The operating efficiency of the CCAS in the reservoir depends on hydraulics and meteological conditions. Computational Fluid Dynamics (CFD) is a very useful tool for evaluating the operating efficiency of fluid dynamics. The geometry for CFD simulation consists of a cylindrical vessel 25 m radius and 40 m height. The CCAS is located in center of domain. The non-uniform tetrahedral meshes had a bulk of the geometry. The meshes ranged from the coarse to the very fine. This is attributed to the cold water flowing into the downcomer and rising, creating a horizontal flow to the top of the CCAS. The result of CFD demonstrate a closer agreement with surveyed data for temperature and flow velocity. Theoretical dispersion volume were calculated at 8m depth, 120 m diameter working for 30 days and 10 m depth, 130 m diameter working for 50 days.

Legibility Evaluation of Two and Three Syllable Words Used in Pesticides According to Font, Thickness, Gender, and Visual Acuity (시력, 폰트, 굵기, 성별에 따른 2음절 및 3음절 농약 제품 표시글자의 가독성 평가)

  • Hwang, Hae-Young;Song, Young-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3444-3451
    • /
    • 2012
  • Safety and health related information for the proper use and handing of pesticides is usually printed on the surface of the pesticide products in the form of texts. But, the guidelines or standards for the appropriate presentation of the texts for the pesticide products are most vague or not practical. Thus, this study aimed to provide the preliminary guidelines for the text sizes based on the legibility experiments. To achieve the objective legibility evaluation experiments were conducted to test the effects of different near vision (0.6, ${\geq}0.8$), gender, font type(thick gothic-type and fine gothic-type), thickness of font(plain and bold), and number of syllables(2 and 3 syllables) in the same age group of 20s. The results showed that legibility was different according to the visual acuity (p<0.05), and no other main effects showed statistically significant effects. The 'maximum illegible size' to read at least one word correctly in all the text conditions was 2 pt when the near vision was ${\geq}0.8$, and 2 pt or 3 pt when the near vision was 0.6. The 'minimum legible size' for 100% correct answer was 9 pt for the near vision of 0.6, and 5.3 pt for ${\geq}0.8$, respectively. Mean character size does not read any discomfort in 0.6 was 15.5 pt in both male and female but male was mean 8.5 pt, female was 10 pt in ${\geq}0.8$. Considering these experimental results, it was recommended that the 16 pt or larger characters should be used the important information such as 'Pesticides' or toxicity, and the minimum character size was 9 pt for the less important information.

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.

Clay Mineralogical Characteristics and Origin of Sediments Deposited during the Pleistocene in the Ross Sea, Antarctica (남극 로스해 대륙대 플라이스토세 코어 퇴적물의 점토광물학적 특성 및 기원지 연구)

  • Jung, Jaewoo;Park, Youngkyu;Lee, Kee-Hwan;Hong, Jongyong;Lee, Jaeil;Yoo, Kyu-Cheul;Lee, Minkyung;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.163-172
    • /
    • 2019
  • A long core (RS15-LC48) was collected at a site in the continental rise between the Southern Ocean and the Ross Sea (Antarctica) during the 2015 Ross Sea Expedition. The mineralogical characteristics and the origin of clay minerals in marine sediments deposited during the Quaternary in the Ross Sea were determined by analyzing sedimentary facies, variations in grain size, sand fraction, mineralogy, clay mineral composition, illite crystallinity, and illite chemical index. Core sediments consisted mostly of sandy clay, silty clay, or ice rafted debris (IRD) and were divided into four sedimentary facies (units 1-4). The variations in grain size distribution and sand content with depth were very similar to the variations in magnetic susceptibility. Various minerals such as smectite, chlorite, illite, kaolinite, quartz, and plagioclase were detected throughout the core. The average clay mineral composition was dominated by illite (52.7 %) and smectite (27.7 %), with less abundant clay minerals of chlorite (11.0 %) and kaolinite (8.6 %). The IC and illite chemical index showed strong correlation trends with depth. The increase in illite and chlorite content during the glacial period, together with the IC and chemical index values, suggest that sediments were transported from the bedrocks of the Transantarctic Mountains. During the interglacial period, smectite may have been supplied by the surface current from Victoria Land, in the western Ross Sea. High values for IC and the illite chemical index also indicate relatively warm climate conditions during that period.

Key Methodologies to Effective Site-specific Accessment in Contaminated Soils : A Review (오염토양의 효과적 현장조사에 대한 주요 방법론의 검토)

  • Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.383-397
    • /
    • 1999
  • For sites to be investigated, the results of such an investigation can be used in determining foals for cleanup, quantifying risks, determining acceptable and unacceptable risk, and developing cleanup plans t hat do not cause unnecessary delays in the redevelopment and reuse of the property. To do this, it is essential that an appropriately detailed study of the site be performed to identify the cause, nature, and extent of contamination and the possible threats to the environment or to any people living or working nearby through the analysis of samples of soil and soil gas, groundwater, surface water, and sediment. The migration pathways of contaminants also are examined during this phase. Key aspects of cost-effective site assessment to help standardize and accelerate the evaluation of contaminated soils at sites are to provide a simple step-by-step methodology for environmental science/engineering professionals to calculate risk-based, site-specific soil levels for contaminants in soil. Its use may significantly reduce the time it takes to complete soil investigations and cleanup actions at some sites, as well as improve the consistency of these actions across the nation. To achieve the effective site assessment, it requires the criteria for choosing the type of standard and setting the magnitude of the standard come from different sources, depending on many factors including the nature of the contamination. A general scheme for site-specific assessment consists of sequential Phase I, II, and III, which is defined by workplan and soil screening levels. Phase I are conducted to identify and confirm a site's recognized environmental conditions resulting from past actions. If a Phase 1 identifies potential hazardous substances, a Phase II is usually conducted to confirm the absence, or presence and extent, of contamination. Phase II involve the collection and analysis of samples. And Phase III is to remediate the contaminated soils determined by Phase I and Phase II. However, important factors in determining whether a assessment standard is site-specific and suitable are (1) the spatial extent of the sampling and the size of the sample area; (2) the number of samples taken: (3) the strategy of taking samples: and (4) the way the data are analyzed. Although selected methods are recommended, application of quantitative methods is directed by users having prior training or experience for the dynamic site investigation process.

  • PDF

Monitoring of a Time-series of Land Subsidence in Mexico City Using Space-based Synthetic Aperture Radar Observations (인공위성 영상레이더를 이용한 멕시코시티 시계열 지반침하 관측)

  • Ju, Jeongheon;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1657-1667
    • /
    • 2021
  • Anthropogenic activities and natural processes have been causes of land subsidence which is sudden sinking or gradual settlement of the earth's solid surface. Mexico City, the capital of Mexico, is one of the most severe land subsidence areas which are resulted from excessive groundwater extraction. Because groundwater is the primary water resource occupies almost 70% of total water usage in the city. Traditional terrestrial observations like the Global Navigation Satellite System (GNSS) or leveling survey have been preferred to measure land subsidence accurately. Although the GNSS observations have highly accurate information of the surfaces' displacement with a very high temporal resolution, it has often been limited due to its sparse spatial resolution and highly time-consuming and high cost. However, space-based synthetic aperture radar (SAR) interferometry has been widely used as a powerful tool to monitor surfaces' displacement with high spatial resolution and high accuracy from mm to cm-scale, regardless of day-or-night and weather conditions. In this paper, advanced interferometric approaches have been applied to get a time-series of land subsidence of Mexico City using four-year-long twenty ALOS PALSAR L-band observations acquired from Feb-11, 2007 to Feb-22, 2011. We utilized persistent scatterer interferometry (PSI) and small baseline subset (SBAS) techniques to suppress atmospheric artifacts and topography errors. The results show that the maximum subsidence rates of the PSI and SBAS method were -29.5 cm/year and -27.0 cm/year, respectively. In addition, we discuss the different subsidence rates where the study area is discriminated into three districts according to distinctive geotechnical characteristics. The significant subsidence rate occurred in the lacustrine sediments with higher compressibility than harder bedrock.

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.

Evaluation of Land Use Change Impact on Hydrology and Water Quality Health in Geum River Basin (금강유역의 토지이용 변화가 수문·수질 건전성에 미치는 영향 평가)

  • LEE, Ji-Wan;PARK, Jong-Yoon;JUNG, Chung-Gil;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.82-96
    • /
    • 2019
  • This study evaluated the status of watershed health in Geum River Basin by SWAT (Soil and Water Assessment Tool) hydrology and water quality. The watershed healthiness from watershed hydrology and stream water quality was calculated using multivariate normal distribution from 0(poor) to 1(good). Before evaluation of watershed healthiness, the SWAT calibration for 11 years(2005~2015) of streamflow(Q) at 5 locations with 0.50~0.77 average Nash-Sutcliffe model efficiency and suspended solid (SS), total nitrogen(T-N), and total phosphorus(T-P) at 3 locations with 0.67~0.94, 0.59~0.79, and 0.61~0.79 determination coefficient($R^2$) respectively. For 24 years (1985~2008) the spatiotemporal change of watershed healthiness was analyzed with calibarted SWAT and 5 land use data of 1985, 1990, 1995, 2000, and 2008. The 2008 SWAT results showed that the surface runoff increased by 40.6%, soil moisture and baseflow decreased by 6.8% and 3.0% respectively compared to 1985 reference year. The stream water quality of SS, T-N, and T-P increased by 29.2%, 9.3%, and 16.7% respectively by land development and agricultural activity. Based on the 1985 year land use condition. the 2008 watershed healthiness of hydrology and stream water quality decreased from 1 to 0.94 and 0.69 respectively. The results of this study be able to detect changes in watershed environment due to human activity compared to past natural conditions.