• Title/Summary/Keyword: Surface Combustion

Search Result 669, Processing Time 0.028 seconds

The Physio-Chemical Characteristics of Aerosol in Urban Area During Snowfall (강설시 도심지역 에어러솔의 물리.화학적 특성)

  • 김민수;이동인;유철환
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.201-208
    • /
    • 2001
  • To investigate the physio-chemical components and properties of aerosol particles in urban area sampling of aerosol particles was carried out in the campus of Hokkaido University, Sapporo, Japan, during snowfall. Aerosol particles were collected on millipore filter papers using a low volume air sampler. Their shapes, sizes and chemical components were analyzed by a SEM(Scanning Electron Microscope) and an EDX(Energy Dispersive X-ray). As a results, ice crystals of dendrite and column types were predominantly shown at mature and developing stage of snowfall intensity. The denerite and sector plate types of ice crystals were mainly originated from the sea but column types were come from soil. Scavenging effect by snowfall was greatly also shown at dendrite type ice crystals that embryo was fully developd. Al, Si elements were shown at high frequencies as compared with others. Na, Cl components were especially shown at high frequencies under the sea-breeze wind during snowfall. Anthropogenic aerosol particles had shown with irregular shapes and sizes, relatively. Mainly 3-7$\mu$m aerosol particles were abundant and coarse particles also could be seen during snowfall. Ca, Zn, Fe components mainly caused by spike tires from vehicles in winter season were dominant before snowfall, however the element S mainly caused by human activity was rich after snowfall. The pH values of snow in Sapporo city were higher than those at coastal area. The concentration of chemical components in aerosol particles was also affected by surface winds. Aerosol particles in urban area, Sapporo were mainly affected by human activities like vehicles and combustion with wind system. And their types were related with snowfall intensity.

  • PDF

Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater (원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

Detonation Initiation via Surface Chemical Reaction of Laser-Ablated Aluminum Sample (표면화학 반응을 통한 Laser-Ablated 알루미늄의 Detonation 현상 연구)

  • Kim, Chang-Hwan;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.197-204
    • /
    • 2012
  • We explore the evolution of metal plasma generated by high laser irradiances and its effect on the surrounding air by using shadowgraph images after laser pulse termination and X-ray diffraction (XRD) of aluminum plasma ablated by a high-power laser pulse (>1000 mJ/pulse) and oxygen from air. Hence, the formation of laser-supported detonation and combustion processes has been investigated. The essence of this paper is in observing the initiation of chemical reaction between the ablated aluminum plasma and oxygen from air by the high-power laser pulse (>1000 mJ/pulse) and in conducting a quantitative comparison of the chemically reactive laser-initiated waves with the classical detonation of an exploding aluminum (dust) cloud in air. The findings in this work may lead to a new method of initiating detonation from a metal sample in its bulk form without any need to mix nanoparticles with oxygen for initiation.

A Study on Evaluation Methods for the Fire-retardant Performance of Hanok Components (건축 마감재의 화재안전기준 비교분석을 통한 한옥 부재의 난연성능 평가기준 연구)

  • Kwark, Ji-Hyun;Choi, Jung-Min;Ku, Jae-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.1-7
    • /
    • 2011
  • In this study, standards and test methods for building materials of domestic and foreign countries were compared and analyzed to propose evaluation methods for the fire-retardant performance of HANOK components (Traditional house). IBC and NFPA codes recently have been adopted in the US, and the properties such as critical heat flux, fire spread index and smoke density are being used as an evaluation reference. In Europe, the unified Euroclass has been adopted and the surface flammability, prototype fire test or cone calorimeter test are conducted for the performance test. Japan has the similar system as Korea where the class is classified into 3 grades. We tried to study a quantitative evaluation method of fire retardant performance for the HANOK components based on the analysis results of the several countries' standards and test methods for building materials.

Effect of Sintering Temperature on the Micro Strain and Magnetic Properties of Ni-Zn Nanoferrites

  • Venkatesh, D.;Siva Ram Prasad, M.;Rajesh Babu, B.;Ramesh, K.V.;Trinath, K.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.229-240
    • /
    • 2015
  • In this study, nanocrystalline ferrite powders with the composition $Ni_{0.5}Zn_{0.5}Fe_2O_4$ were prepared by the autocombustion method. The obtained powders were sintered at $800^{\circ}C$, $900^{\circ}C$ and $1,000^{\circ}C$ for 4 h in air atmosphere. The as-prepared and the sintered powders were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and magnetization studies. An increase in the crystallite size and a slight decrease in the lattice constant with sintering temperature were observed, whereas microstrain was observed to be negative for all the samples. Two significant absorption bands in the wave number range of the $400cm^{-1}$ to $600cm^{-1}$ have been observed in the FT-IR spectra for all samples which is the distinctive feature of the spinel ferrites. The force constants were found to vary with sintering temperature, suggesting a cation redistribution and modification in the unit cell of the spinel. The M-H loops indicate smaller coercivity, which is the typical nature of the soft ferrites. The observed variation in the saturation magnetization and coercivity with sintering temperature has been attributed to the role of surface, inhomogeneous cation distribution, and increase in the crystallite size.

A Study on Flash Points and Fire Points of Acids Using Closed Cup and Open-cup Apparatus (밀폐식과 개방식 장치를 이용한 Acid류의 인화점과 연소점에 관한 연구)

  • Ha, Dong-Myeong;Han, Jong-Geun;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.29-34
    • /
    • 2006
  • The flash and fire point are the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable material. The flash point is defined as the lowest temperature at which a flammable liquid gives off sufficient vapor to form an ignitable mixture with air near its surface or within a vessel. The fire point is the temperature of the flammable liquid at which there will be flaming combustion, sustained 5 seconds in response to the pilot flame. In this study, the flash points and fire points were measured to present raw data of the flammable risk assessment for acids, using Pensky-Martens Closed Cup(C.C.) apparatus (ASTM-D93) and Tag Open-cup (O.C.) apparatus(ASTM D 1310-86). The measured fire points were compared with the estimated values based on 1.11 times stoichiometric concentration. The values calculated by the proposed equation were in good agreement with measured values.

A Study on Combustion Experiments of Color Nonwoven (칼라 부직포의 연소실험에 관한 연구)

  • Min, Se-Hong;Im, Sang-Bum
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.99-106
    • /
    • 2011
  • Experiments of Cone calorimeter test and Lift spread flame apparatus test are carried out in order to appraise fire hazard in color nonwoven used mostly on the spot in construction works. As the result, in color nonwoven combustibility is discovered not firing flame in surface, but firing under state of combustible gas occuring in the state of melting. In the case of Lift spread flame apparatus test, color nonwoven is very brittle which almost no flame spread owing to contracting and break by firing strength. The following data are agree with basis: total heat release is 2.66 MJ/$m^2$, limited combustible material (10 min) of incombustible rating appraisal in interior material of building, and incombustible materials (5 min) 8 MJ/$m^2$ in spite of the above data mentioned, those data are only as basis of interior finish, and so I cannot judge color nonwoven have incombustible rating retain through the above data. Accordingly, the basis of incombustible rating and experiment method about exterior finish must be arranged also.

Preparation of Mg(OH)2 Dispersion and its Application to PET Non-woven Textile as Flame Retardant Coating (수산화마그네슘 분산상의 제조와 PET 부직포 섬유의 난연 코팅제 적용)

  • Lim, Hyung-Mi;Hyun, Mi-Kyung;Jeong, Sang-Ok;Lee, Dong-Jin;Lee, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.537-542
    • /
    • 2011
  • Magnesium hydroxide as a non-halogen flame retardant has increasing attention due to its non-toxicity, high decomposition temperature and smoke suppressant ability during combustion. For the application of magnesium hydroxide retardant to the textile by soaking and coating method, the prerequisite for the coating is a small particle size, stable dispersion, and adhesion to the textile. The dispersion of $Mg(OH)_2$ particles and stability of the coating was checked by monitoring the change of transmittance and backscattering by varying the types of dispersion agents, binder, solvent, and $Mg(OH)_2$ source, and their compositions in the coating. The $Mg(OH)_2$ dispersion coating was applied to PET(poly(ethylene terephthalate)) non-woven textile. The physical properties are characterized by surface morphology, amount of coating, particle dispersion, and adhesion test. The flame retardant $Mg(OH)_2$ coated textile has been compared by limited oxygen index(LOI) and thermal gravimetry and differential scanning calorimetry(TG-DSC). It was found that phosphorous additive may give synergistic effect on $Mg(OH)_2$ flame retardant coating to make the flame retardant PET non-woven textile.

Experimental study of extinguishment of the pure diffusion flame using water spray (수분무를 이용한 순수확산화염의 소화에 관한 실험적 연구)

  • Jang, Yong-Jae;Kim, Myeong-Bae;Kim, Jin-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.624-631
    • /
    • 1996
  • This study describes extinguishment mechanism of the purely buoyant diffusion flame using the water spray. Experiments are systematically carried out for the oul pool fire with the six different atomizing nozzles. From the measurement of burning rate which represents the combustion intensity of fire, it is observed that the water spray is able to act to enhance fire rather than to extinguish fire. The air entertainment due to the water spray is visualized to understand this phenomenon, acting to enhance fire. In order to observe effects of droplet size on fire extinguishment, and amount of water which reaches the flame base, fuel surface, and mean diameter of droplets are measured. When water droplets are too small, they do not reach the flame base because they can the water spray having too small doplets is ineffective for extinguishment of the oil fire.

An Investigation on Dynamic Behaviors of Single Vortex with CO2 Dilution in a CH4-Air Jet Diffusion Flame (CH4공기 제트 확산화염에서 CO2 첨가에 따른 단일 와동의 동적거동에 관한 연구)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Dae-Yup;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1209-1219
    • /
    • 2003
  • The dynamic behaviors of the single vortex interacting with $CH_4-Air$ jet diffusion flame are investigated numerically. The numerical method is based on a predict-corrector scheme for a low Mach number flow. A two-step global reaction mechanism is adopted as a combustion model. Studies are conducted in fixed initial velocities for the three cases according as where $CO_2$ is added; (1) without dilution, (2) dilution in fuel stream and (3) dilution in oxidizer stream. A single vortex is generated by an axisymmetric jet, which is made by an impulse of a cold fuel when a flame is developed entirely in a computational domain. The simulation shows that $CO_2$ dilution in fuel stream results in somewhat larger vortex radius, and greater amount of entrainment of surrounding fluid than in other cases. Thus, the dilution of $CO_2$ in fuel stream enhances the mixing in single vortex and increases the stretching of the flame surface. The budgets of the vorticity transport equation are examined to reveal the mechanism of vortex formation when $CO_2$ is added. It is found that, in the case of $CO_2$ dilution in fuel stream, the vortex destruction due to volumetric expansion and the vortex production due to baroclinic torque are more dominant than in other cases.