DOI QR코드

DOI QR Code

Detonation Initiation via Surface Chemical Reaction of Laser-Ablated Aluminum Sample

표면화학 반응을 통한 Laser-Ablated 알루미늄의 Detonation 현상 연구

  • Kim, Chang-Hwan (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Yoh, Jai-Ick (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 김창환 (서울대학교 기계항공공학부) ;
  • 여재익 (서울대학교 기계항공공학부)
  • Received : 2011.09.01
  • Accepted : 2011.10.21
  • Published : 2012.02.01

Abstract

We explore the evolution of metal plasma generated by high laser irradiances and its effect on the surrounding air by using shadowgraph images after laser pulse termination and X-ray diffraction (XRD) of aluminum plasma ablated by a high-power laser pulse (>1000 mJ/pulse) and oxygen from air. Hence, the formation of laser-supported detonation and combustion processes has been investigated. The essence of this paper is in observing the initiation of chemical reaction between the ablated aluminum plasma and oxygen from air by the high-power laser pulse (>1000 mJ/pulse) and in conducting a quantitative comparison of the chemically reactive laser-initiated waves with the classical detonation of an exploding aluminum (dust) cloud in air. The findings in this work may lead to a new method of initiating detonation from a metal sample in its bulk form without any need to mix nanoparticles with oxygen for initiation.

본 논문에서는 공기 중에서 높은 레이저 복사 조도에 따른 효과에 의해 발생되는 금속 플라즈마의 발달 과정에 대하여 레이저 펄스가 끝나는 이후로 쉐도우그래프(Shadowgraph) 가시화 방법을 이용하여 현상을 연구하였다. 따라서 레이저에 의한 데토네이션의 발생과 이를 일으키는 연소 과정 대한 연구가 진행되었다. 본 논문의 가장 중요한 점들은 높은 레이저 에너지에 의해 삭마 된 기체 상태의 알루미늄과 공기로부터의 산소와의 화학 반응의 진행을 관측했을 뿐만 아니라, 화학 반응 최종 산화물을 X선 회절 분석법(X-Ray Diffraction)을 통해 관측한 것이다. 그리고 레이저를 통해 유도된 화학적 반응 파와 공기 중에서의 알루미늄 분진 폭발의 데토네이션과의 양적인 평가를 유도하였다. 이러한 연구는 덩어리 상태의 금속 샘플에서 공기 중의 산소를 이용하여 데토네이션을 발생시키는 새로운 방법을 제시할 것으로 여겨진다.

Keywords

References

  1. Ageeva, V. P., Barchukova, A. I., Bunkina, F. V., Konova, V. I., Korobeinikova, B. V. Putjatina, V. P. and Hudjakova, V. M., 1980, "Experimental and Theoretical Modeling of Laser Propulsion," Acta Astronautica, Vol. 7, Issue 1, pp. 79-90. https://doi.org/10.1016/0094-5765(80)90119-8
  2. Sabsabi, M. and Cielo, P., 1995, "Quantitative Analysis of Aluminum Alloys by Laser-Induced Breakdown Spectroscopy and Plasma Characterization," Applied Spectroscopy, Vol. 49, Issue 4, pp. 499-507 https://doi.org/10.1366/0003702953964408
  3. Root, R.G., 1989, "Modeling of Post Breakdown Phenomena. Laser-Induced Plasmas and Applications," Marcel-Dekker., pp. 69-103
  4. Ramsden, S. A. and Savic, P., 1964, "A Radiative Detonation Model for the Development of a Laser-Induced Spark in Air," Nature, Lond. 203, pp. 1217-1219 https://doi.org/10.1038/2031217a0
  5. Raizer, Y. P., 1964, "Heating of a Gas by a Powerful Light Pulse," Soviet Physics JETP Vol. 21, pp. 1009
  6. Ushio, M., Komurasaki, K., Kawamura, K. and Arakawa, Y., 2008, "Effect of Laser Supported Detonation Wave Confinement on Termination Conditions," Vol. 18, No. 1, pp. 35-39 https://doi.org/10.1007/s00193-008-0137-y
  7. Zhang, F., Gerrard, K. and Ripley, RC., 2009, "Reaction Mechanism of Aluminum-Particle-Air Detonation," Journal of Propulsion and Power, Vol. 25, No. 4, pp. 845-858 https://doi.org/10.2514/1.41707
  8. Tulis, A. J. and Selman, J. R., 1982, "Detonation Tube Studies of Aluminum Particles Dispersed in Air," Proceedings of the 19th International Symposium on Combustion, Combustion Inst. pp. 655-663
  9. Zhang, F, Murray, S. B. and Gerrard, K., 2006, "Aluminum Particles-air Detonation at Elevated Pressures," Shock Waves, Vol. 15, No. 5, pp. 313-324 https://doi.org/10.1007/s00193-006-0027-0
  10. Xue W., Deng, Z., Lai, Y. and Chen, R., 1998, "Analysis of Phase Distribution for Ceramic Coatings Formed by Microarc Oxidation on Aluminum Alloy," Journal of the American Ceramic Society, Vol. 81, Issue 5, pp. 1365-1367 https://doi.org/10.1111/j.1151-2916.1998.tb02493.x
  11. Das, R. N., Bandyopadhyay, A. and Bose, S., 2001, "Nanocrystalline $\alpha$-Al2O3 Using Sucrose," Journal of the American Ceramic Society, Vol. 84, Issue 10, pp. 2421-2423 https://doi.org/10.1111/j.1151-2916.2001.tb01024.x
  12. Ruffell, A. and Wiltshire, P., 2004, "Conjunctive use of Quantitative and Qualitative X-Ray Diffraction Analysis of Soils and Rocks for Forensic Analysis," Forensic Science International, Vol. 145, Issue 1, pp. 13-23 https://doi.org/10.1016/j.forsciint.2004.03.017
  13. Ortiz, A. L. and Shaw, L., 2004, "X-Ray Diffraction Analysis of a Severely Plastically Deformed Aluminum Alloy," Acta Materialia, Vol. 52, Issue 8, pp. 2185-2197 https://doi.org/10.1016/j.actamat.2004.01.012
  14. Radziemski, L. J. and Cremers, D. A., 1989, "Laser-Induced Plasmas and Applications," Marcel-Dekker, New York, pp. 23-42, 69-103
  15. Kleine, H., Deway, J. M., Ohashi, K. Mizukaki, T. and Takayama, K., 2003, "Studies of the TNT Equivalence of Silver Azide Charges," Shock Waves, Vol.13, No. 2, pp. 123-138 https://doi.org/10.1007/s00193-003-0204-3
  16. Piehler, T. N., DeLucia, F. C., Jr., Munson, C. A., Homan, B. E., Miziolek, A. W. and McNesby, K. L., 2005, "Temporal Evolution of the Laser-Induced Breakdown Spectroscopy Spectrum of Aluminum Metal in Different Bath Gases," Applied Optics, Vol. 44, Issue 18, pp. 3654-3660 https://doi.org/10.1364/AO.44.003654