• Title/Summary/Keyword: Surface Angle

Search Result 4,246, Processing Time 0.028 seconds

Analysis on the Rainfall Driven Slope Failure Adjacent to a Railway : Flume Tests (강우로 인한 철도 연변사면의 활동분석 : 실내모형실험)

  • SaGong Myung;Kim Min-Seok;Kim Soo-Sam;Lee In-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.83-91
    • /
    • 2006
  • Recently, the intensive rainstorm possibly induced by global warming plays a key role on the instability of railway adjacent slopes. The instability of slopes results as covering and loss of railway lines induced by slided soil mass. According to the site investigation on the failed slopes triggered by rainfall, low types of slope failure were observed: shallow, intermediate, gully erosion, and soil-rock interface failures. The observation reveals the different characteristics of slope failure depending on the thickness of soil layer, morphological features of slope, etc. Based upon the observations, flume tests were conducted to analyze the sliding mechanism of each failure. The variables of flume test are soil layer thickness, rainfall intensity, and morphology of slope under the constant condition of the percentage of fine, initial soil moisture content, slope angle and compaction energy. Test results show that shallow failure was mostly observed from the surface of the slope and caused by the soil erosion; in addition, compared to the other types of failure, the occurrence of initial erosion is late, however, the development of erosion is fast. In gully erosion failure, the collected water from the water catchment area helps erosion of the upper soil layer and transfer of residual corestone, which impedes the erosion process once the upper soil layers are eroded and corestone are exposed. The soil-rock interface failure shows the most fast initial erosion process among the failure types. Interestingly, the common feature observed from the different types of failure was the occurrence of the initial deformation near the toe of slopes which implies the existence of surbsurface flow along the downslope direction.

Interfacial Properties of Propylene Oxide Adducted Sodium Laureth Sulfate Anionic Surfactant (프로필렌 옥사이드를 부가한 소듐 라우레스 설페이트 음이온 계면활성제의 계면 특성에 관한 연구)

  • Jeong Min Lee;Ki Ho Park;Hee Dong Shin;Woo Jin Jeong;Jong Choo Lim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.264-271
    • /
    • 2023
  • In this study, ASCO SLES-430 surfactant was synthesized by adducting 3 moles of ethylene oxide and 1 mole of propylene oxide to lauryl alcohol followed by a sulfation process, and the structure of the synthesized ASCO SLES-430 was elucidated by performing FT-IR, 1H-NMR and 13C-NMR analyses. Interfacial properties such as critical micelle concentration, static surface tension, emulsification index, and contact angle were measured, and environmental compatibility indices such as oral toxicity and skin irritation were also estimated for ASCO SLES-430. Both results were compared with ASCO SLES-226 and ASCO SLES-328 SLES surfactants possessing 2 moles and 3 moles of ethylene oxide, respectively. In particular, both foaming ability and foam stability were evaluated for ASCO SLES-430 and compared with ASCO SLES-226 and ASCO SLES-328, which have been widely used in detergent products, in order to test the potential applicability of ASCO SLES-430 in detergent product formulation for a small capacity built-in washing machine.

Evaluation of the Characteristics of High-Flux Reverse Osmosis Membranes with Various Additives (다양한 첨가제에 따른 고투과성 역삼투막의 특성평가)

  • Hyun Woong Kwon;Kwang Seop Im;Gede Herry Arum Wijaya;Seong Min Han;Seong Heon Kim;Jun Ho Park;Dong Jun Lee;Sang Min Eom;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.427-438
    • /
    • 2023
  • In this study, in order to improve the performance of the reverse osmosis membrane with high water flux and high salt rejection, a study was conducted on the evaluation of characteristics according to the curing temperature and time during various additives and interfacial polymerization. The morphology of the membrane with no additives and the membrane with additives both showed a "rigid-and-valley" structure, confirming that the polyamide layer was successfully polymerized on the surface of the porous support layer. In addition, the additive of 2-Ethyl-1,3-hexanediol (EHD) had improved hydrophilicity and water flux, which was confirmed by measuring the contact angle. Finally, a highly permeable TFC membrane with NaCl and MgSO4 salt rejection of 97.78% and 98.7% and a high water flux of 3.31 L/(m2⋅h⋅bar) was prepared.

A Study on the Optimization of α-Al2O3 Powder Manufacturing for the Application of Separators for Lithium-Ion Secondary Batteries (리튬이차전지용 분리막 적용을 위한 α-알루미나 분말 제조 최적화 연구)

  • Dong-Myeong Moon;Da-Eun Hyun;Ji-Hui Oh;Jwa-Bin Jeon;Yong-Nam Kim;Kyoung-Hoon Jeong;Jong-Kun Lee;Sang-Mo Koo;Dong-Won Lee;Jong-Min Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.638-646
    • /
    • 2023
  • Recently, active research has been conducted to enhance the power characteristics and thermal stability of lithium-ion batteries (LiBs) by modifying separators using a ceramic coating method. However, since the thermal properties and surface features of the separator vary depending on the characteristics of the ceramic powders applied to the separator, it is crucial to manufacture ceramic powders optimized for the separator's performance. In this study, we evaluated the characteristics of three types of α-alumina (A-1, A-2, and A-3) produced with varying dispersant contents and milling times, in addition to commercial α-alumina (AES-11). Subsequently, the optimized powders (A-3) were coated onto the separator using an aqueous binder for comparison with the characteristics of an AES-11 coated separator and an uncoated PE separator. The A-3 coated separator improved electrolyte wettability with a low contact angle (44.69°) and increased puncture strength (538 gf). Furthermore, it exhibited excellent thermal stability, with a shrinkage value of 5.64% when exposed to 140℃ for 1 hour, compared to the AES11 coated separator (6.09%) and the bare PE separator (69.64%).

Research on the Development of Microneedle Arrays Based on Micromachining Technology and the Applicability of Parylene-C (미세가공 기술 기반의 마이크로니들 어레이 개발 및 패럴린 적용 가능성에 관한 연구)

  • Dong-Guk Kim;Deok-kyu Yoon;Yongchan Lee;Min-Uk Kim;Jihyoung Roh;Yohan Seo;Kwan-Su Kang;Young Hun Jeong;Kyung-Ah Kim;Tae-Ha Song
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.404-413
    • /
    • 2023
  • In this research, we studied the development of a SUS304 microneedle array based on microfabrication technology and the applicability of Parylene-C thin film, a medical polymer material. First of all, four materials commonly used in the field of medical engineering (SUS304, Ti, PMMA, and PEEK) were selected and a 5 ㎛ Parylene-C thin film was deposited. The applicability of Parylene-C coating to each material was confirmed through SEM analysis, contact angle measurement, surface roughness(Ra) measurement, and adhesion test according to ASTM standards for each specimen. Parylene-C thin film was deposited based on chemical vapor deposition (CVD), and a 5 ㎛ Parylene-C deposition process was established through trial and error. Through characteristic experiments to confirm the applicability of Parylene-C, SUS304 material, which is the easiest to apply Parylene-C coating without pretreatment was selected to develop a microneedle array based on CNC micromachining technology. The CNC micromachining process was divided into a total of 5 steps, and a microneedle array consisting of 19 needles with an inner diameter of 200 ㎛, an outer diameter of 400 ㎛, and a height of 1.4 mm was designed and manufactured. Finally, a 5 ㎛ Parylene-C coated microneedle array was developed, which presented future research directions in the field of microneedle-based drug delivery systems.

Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection (고감도 H2S 감지를 위한 SnO2 장식된 Cr2O3 nanorods 이종구조)

  • Jae Han Chung;Yun-Haeng Cho;Junho Hwang;Su hyeong Lee;Seunggi Lee;See-Hyung Park;Sungwoo Sohn;Donghwi Cho;Kwangjae Lee;Young-Seok Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • The creation of vertically aligned one-dimensional (1D) nanostructures through the decoration of n-type tin oxide (SnO2) on p-type chromium oxide (Cr2O3) constitutes an effective strategy for enhancing gas sensing performance. These heterostructures are deposited in multiple stages using a glancing angle deposition technique with an electron beam evaporator, resulting in a reduction in the surface porosity of the nanorods as SnO2 is incorporated. In comparison to Cr2O3 films, the bare Cr2O3 nanorods exhibits a response 3.3 times greater to 50 ppm H2S at 300℃, while the SnO2-decorated Cr2O3 nanorods demonstrate an eleven-fold increase in response. Furthermore, when subjected to various gases (CH4, H2S, CO2, H2), a notable selectivity toward H2S is observed. This study paves the way for the development of p-type semiconductor sensors with heightened selectivity and sensitivity towards H2S, thus advancing the prospects of gas sensor technology.

THE EFFECT OF CYCLIC LOADING ON THE RETENTIVE STRENGTH OF FULL VENEER CROWNS (반복 하중이 Full veneer crown의 유지력에 미치는 영향에 관한 연구)

  • Kim, Ki-Youn;Lee, Sun-Hyung;Chung, Hun-Young;Yang, Jae-Ho;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.583-594
    • /
    • 2000
  • Dislodgement of a crown or extension bridge and the loosening of a retainer of a bridge is a serious clinical problem in fixed restoration. Generally these problems are considered to be associated with deformation of the restoration. During biting, the restoration is subjected to complex forces and deforms considerably within the limit of its elasticity. Deformation of the restoration under the occlusal force induces excessive stress in the cement film, which then leads to the cement fracture. Such a fracture may eventually cause loss of the restoration. Because most of the past retention tests for full veneer crown were done without fatigue loading, they were not exactly simulating intraoral environment. And the purpose of this study was to evaluate the effect of cyclic cantilever loading on the retentive strength of full veneer crowns depending on different type of cements and taper of prepared abutment. Steel dies with $8^{\circ}\;or\;16^{\circ}$ convergence angle were fabricated through milling and crowns with the same method. These dies and crowns were divided into 8 groups. Group 1 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 2 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 3 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 4 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 5 : $16^{\circ}$ taper die, cementation with Panavia 21, without loading Group 6 : $16^{\circ}$ taper die, cementation with Panavia 21, with loading Group 7 : $8^{\circ}$ taper die, cementation with Panavia 21 without loading Group 8 : $8^{\circ}$ taper die, cementation with Panavia 21, with loading After checking the fit of die and crown, the luting surface of dies and inner surface of crowns were air-abraded for 10 seconds. The crowns were cemented to the dies, with cements mixed according to the manufacturer's recommendations. A static load of 5kg was then applied for 10 minutes with static loading device. Twenty-four hours later, group 1, 3, 5, 7 were only thermocycled, group 2, 4, 6, 8 were subjected to cyclic loading after thermocycling. Retentive tests were performed on the Instron machine. From the finding of this study, the following conclusions were obtained 1. Panavia 21 showed significantly higher retentive strength than zinc phosphate cement for all groups (p<0.05). 2. There was a significant difference in the retentive strength between $8^{\circ}\;and\;16^{\circ}$ taper for zinc phosphate cement(p<0.05), but no significant difference for Panavia 21 (p>0.05). 3. Cyclic loading significantly decreased the retentive strength for all groups(p<0.05). 4. For zinc phosphate cement, there was 35% reduction of the retentive strength after loading in the $16^{\circ}$ taper die, 25% in the $8^{\circ}$ taper die, and for Panavia 21, 21% in the $16^{\circ}$ taper die, 18% in the $8^{\circ}$ taper die.

  • PDF

Assessment of the Breast-Firmming Effects of a Cosmetic Preparation with Moir$\acute{e}$ Tophography in Combination with 2D and 3D Digital Image Analyses (2D 및 3D 디지털 이미지 분석과 함께 Moir$\acute{e}$ Tophography 분석을 이용한 화장품의 가슴 탄력개선 효과 평가)

  • Seo, Young Kyoung;Yoo, Mi Ae;Ryu, Ja Hyun;Kim, So Jeong;Cho, Seong A;Nam, Gae Won;Cho, Jun-Cheol;Boo, Yong Chool;Koh, Jae-Sook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.4
    • /
    • pp.289-296
    • /
    • 2012
  • Cosmetic products which might augment the breast have attracted an attention and objective methods for the evaluation of such products are in high demand. This study was conducted to establish a method for assessing the breast-firmming effects of cosmetics. This study included a total of 30 healthy Korean females aged 20-50 years. A cosmetic product was applied by massaging it onto the breast twice a day for 8 weeks. Measurement of breast girth with a tape ruler, 2D and 3D digital image analyses, and Moir$\acute{e}$ topographic analysis were performed before and following the treatment. The application of a cosmetic onto the breast significantly increased breast girth at 2, 4 and 8 weeks without a significant change in underbreast girth, implicating the breast might be augmented. The 2D image analysis indicated that the arc length of the breast which represents the surface distance from the nipple to the periphery of the under-breast was significantly increased at 2, 4 and 8 weeks. The height of the breast which represents the perpendicular distance from the nipple to the periphery of the under-breast was also increased significantly at 4 and 8 weeks. The 3D image analysis of body surface also demonstrated a significant increase of breast volume at 2, 4 and 8 weeks. Moir$\acute{e}$ topographic analysis indicated that breast sagging was significantly reduced at 2, 4 and 8 weeks. The results of this study suggest that Moir$\acute{e}$ topography in combination with 2D and 3D digital image analyses may be useful for evaluating the breast-augmenting effects of cosmetics.

Influence of bearing surface angle of abutment screw on mechanical stability of joint in the conical seal design implant system (내부 원추형 연결형태 임플란트에서 지대주 나사머리의 좌면각도가 연결부 기계적 안정성에 미치는 영향)

  • Kim, Joo-Hyeun;Huh, Jung-Bo;Yun, Mi-Jung;Kang, Eun-Sook;Heo, Jae-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.3
    • /
    • pp.206-214
    • /
    • 2014
  • This study is to evaluate how different bearing surface angles of abutment screw affect the mechanical stability of the joint in the conical seal design implant system. Materials and Methods: Internal connection type regular implants, two-piece cemented type abutments and tungsten carbide/carbon-coated titanium alloy abutment screws were selected. Titanium alloy screws with conical ($45^{\circ}$) and flat ($90^{\circ}$) head designs which fit on to abutment were fabricated. The abutments were tightened to implants with 30 Ncm by digital torque gauge. The loading was applied once to the central axis of abutment. The mean axial displacement was measured using micrometer before and after the tightening and loading (n = 5). The abutment was tightened to implants with 30 Ncm and T-shape stainless steel crown was cemented. Then the change in the amount of reverse-torque was measured after the repeated loading to the central axis, and the place 5 mm away from the central axis. Compressive bending and fatigue strength were measured at the place 5 mm away from the central axis (n = 5). Results: Both groups showed the largest axial displacement when abutment screw tightening and total displacement was greater in the flat head group compared to conical head group (P < 0.05). However, there were no significant differences in reverse torque value, compressive bending and fatigue strength (P > 0.05). Conclusion: Within the limitations of this study, the abutment screw head design had no effect on two groups regarding the joint stability, however the conical head design affected the settlement of abutment resulting in the reduced total displacement.

Effects of Sodium and Gallium on Characteristics of CIGS Thin Films and CdS/CIGS Solar Cells by Co-evaporation Method (Na확산과 Ga첨가에 따른 동시진공증발법으로 제조된 CIGS 박막과 CdS/CIGS 태양전지의 특성)

  • Kwon, S.H.;Lee, J.C.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.S.;Lee, D.Y.;Ahn, B.T.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.43-54
    • /
    • 2000
  • We prepared and characterized $Cu(In_{1-x}Ga_x)Se_2$(CIGS) films using a elemental co-evaporation method for absorbing layer of high efficiency thin film solar cells. The CIGS films deposited on a soda-lime glass exhibited low resistivity because of higher carrier concentration. Na was accumulated at the CIGS surface and the 0 and Se were also accumulated at the surface, suggesting that oxidation is a driving force of Na accumulation. The structure of CIGS film was modified or a secondary phase was formed in the Cu-poor CIGS bulk films probably due to the incorporation of Na into Cu vacancy sites. As the Ga/(In+Ga) ratio increased, the diffraction peaks of $Cu(In_{1-x}Ga_x)Se_2$ films were shifted to larger angle and splitted, and the grain size of $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films became smaller. All $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films showed the p-type conductivity regardless of the Ga/(In+Ga) ratio. Ag/n-ZnO/i-ZnO/CdS/$Cu_{0.91}(In_{0.7}Ga_{0.3})Se_2$/Mo solar cells were fabricated. The currently best efficiency in this study was 14.48% for $0.18cm^2$ area ($V_{oc}=581.5mV,\;J_{sc}=34.88mA$, F.F=0.714).

  • PDF