• Title/Summary/Keyword: Surface Adhesion

Search Result 2,048, Processing Time 0.032 seconds

Adhesive Properties of High Flowable SBR-modified Mortar for Concrete Patching Material Dependent on Surface Water Ratio of Concrete Substrate (콘크리트 피착체의 표면수율에 따른 단면복구용 고유동성 SBR 개질 모르타르의 부착특성)

  • Do, Jeong Yun;Kim, Doo Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.124-134
    • /
    • 2013
  • This study investigated the effect of surface water on concrete substrate on adhesive strength in tension of very high flowable SBR-modified cement mortar. The specimens were prepared with proportionally mixing SBR latex, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Polymer cement ratio (P/C) were 10, 20, 30, 50 and 75% and the weight ratio of fine aggregate to cement were 1:1 and 1:3. The specimens obtained with different P/C and C:F were characterized by unit weight, flow test, crack resistance and adhesion test. After basic tests, two mixtures of P/C=20% and 30% in case of C:F=1:1, and one mixture of P/C=50% in case of C:F=1:3 were selected, respectively. These three selected specimens were studied about the effect of surface water evenly sprayed on concrete substrate by a amount of 0, 0.006, 0.012, 0.017, 0.024g per unit area ($cm^2$) of concrete substrate surface The results show that surface water on concrete substrate increases the adhesive strength in tension of high flowable SBR-modified cement mortar and improve the flowability compared to the non-sprayed case.

Slant Shear Test for Determining the Interfacial Shear Strength of Concrete Strengthened with Ultra-High Performance Fiber Reinforced Concrete (초고성능 섬유보강 콘크리트로 보강된 콘크리트의 계면 전단강도 결정을 위한 경사전단 실험)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.637-646
    • /
    • 2016
  • In this study, slant shear tests for the prism specimens strengthened with ultra-high performance fiber reinforced concrete (UHPFRC), normal- and high-strength concrete were performed to evaluate the interfacial shear strength between old and new concrete substrate. Test parameters are the roughness of surface, concrete strength, and fiber volume fraction of UHPFRC. The surface of the concrete was roughened by shot blasting. Test results showed that the adhesion bond resistance of the specimen with a roughened surface was very large compared to that of the specimen with a smooth surface. In addition, the interfacial shear strength appeared to be affected by the concrete strength rather than the fiber volume fraction. For the roughened surface by shot-blasting method, interfacial shear resistance exceeded the upper limit which is presented in current design codes even if the shear-friction reinforcements are not provided. Based on the test results, it is applicable to use the current concrete design codes to achieve the shear-friction design for the interface between conventional concrete and UHPFRC. However, for the surface which is not processed, it would be appropriate to provide additional shear-friction reinforcement.

CD34 Monoclonal Antibody-Immobilization on Polyurethane Surface by Poly(PEGA-co-BMA) Coating (PEGA/BMA 공중합체의 코팅을 통해 CD34 단일클론항체가 고정화된 폴리우레탄 표면)

  • Joung, Yoon-Ki;Hwang, In-Kyu;Park, Ki-Dong
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.602-607
    • /
    • 2009
  • A polyurethane (PU) surface enabling in vivo endothelialization via endothelial progenitor cell (EPC) capture was prepared for cardiovascular applications. To introduce CD34 monoclonal antibody (mAb) inducing EPC adhesion onto a surface, poly (poly (ethylene glycol) acrylate-co-butyl methacrylate) and poly (PEGA-co-BMA) were synthesized and then coated on a surface of PU, followed by immobilizing CD34 mAb. $^1H$-NMR analysis demonstrated that poly(PEGA-co-BMA) copolymers with a desired composition were synthesized. Poly(PEGA-co-BMA)-coated PU was much more effective for the immobilization of CD34 mAb, comparing with PEG-grafted PU prepared in our previous study, as demonstrated by that surface density and activity of CD34 mAb increased over 32 times. Physico-chemical properties of modified PU surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle, and atomic force microscopy (AFM). The results demonstrated that the poly(PEGA-co-BMA) coating was effective for CD34 mAb immobilization and feasible for applying to cardiovascular biomaterials.

The Expression of Adhesion Molecules on Alveolar Macrophages and Lymphocytes and Soluble ICAM-1 Level in Serum and Bronchoalveolar Lavge(BAL) Fluid of Patients with Diffuse Interstitial Lung Diseases(DILD) (간질성 폐질환환자들의 기관지 폐포세척액내 폐포 대식세포와 임파구의 접착분자 발현 및 Soluble ICAM-1 농도에 관한 연구)

  • Kim, Dong-Soon;Choi, Kang-Hyun;Yeom, Ho-Kee;Park, Myung-Jae;Lim, Chai-Man;Koh, Yoon-Suck;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.569-583
    • /
    • 1995
  • Background: The expression of the adhesion molecules on the cell surface is important in the movement of cells and the modulation of immune response. DILD starts as an alveolitis and progresses to pulmonary fibrosis. So adhesion molecules in these patients is expected to be increased. There are several reports about adhesion molecules in DILD in terms of the percentage of positive cells in immuno-stain, in which the interpretation is subjective and the data were variable. Methods: So we measured the relative median fluorescence intensity(RMFI) which is the ratio of the FI emitted by bound primary monoclonal antibody to FI emitted by isotypic control antibody of the cells in BALF of 28 patients with DILD(IPF:10, collagen disease:7, sarcoidosis:9, hypersensitivity pneumonitis:2) and 9 healthy control. Results: RMFI of the ICAM-1 on AM($3.30{\pm}1.16$) and lymphocyte($5.39{\pm}.70$) of DILD were increased significantly than normal control($0.93{\pm}0.18$, $1.06{\pm}0.21$, respectively, p=0.001, P=0.003). RMFI of the CD18 on lymphocyte was also higher($24.9{\pm}14.9$) than normal($4.59{\pm}3.77$, p=0.0023). And there was a correlation between RMFI of ICAM on AM and the % of AM(r=-0.66, p=0.0001) and lymphocyte(r=0.447, p=0.0116) in BALF. Also RMFI of ICAM on lymphocyte had a significant (r=0.593, p=0.075) correlation with the % of IL-2R(+) lymphocyte in BALF. The soluble ICAM(sICAM) in serum was also significantly elevated in DILD($499.7{\pm}222.2\;ng/ml$) compred to normal($199.0{\pm}38.9$) (p=0.00097) and sICAM in BAL fluid was also significantly higher than normal control group($41.8{\pm}23.0\;ng/ml$ vs $20.1{\pm}13.6\;ng/ml$). There was a Significant correlation between sICAM level in serum and the expression of ICAM-l on AM(r=0.554, p=0.0259).Conclusion: These data suggest that in DILD the expression of adhesion molecules is increased in the AM and BAL lymphocytes with elevated serum sICAM, and these parameter may be useful in determining disease activity.

  • PDF

Surface Modification of Recycled Plastic Film-Based Aggregates for Use in Concrete (폐플라스틱 복합필름 기반 콘크리트용 골재의 표면 개질)

  • Kim, Tae Hun;Lee, Jea Uk;Hong, Jin-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.295-302
    • /
    • 2021
  • Surface modification of recycled plastic film-based aggregates is demonstrated to enhance the interaction between aggregates and cement paste. It is shown that the oxygen(O2) atmospheric pressure plasma(APP) treatment leads to a drastic increase in hydrophilicity. In case of the plasma treatment at 100W of RF power, 15/4sccm of O2/Ar flow rate and 30sec of discharging time, the water contact angle on the aggregates surface decreased from 104.5° to 44.0°. In addition, the contact angle of surface modified aggregates kept in air increased with time elapse. Improvement of hydrophilicity can be explained by the formation of new hydrophilic oxygen functional groups which is identified as C-OH, C-O-C, C=O, -COOH by X-ray photoelectron spectroscopy(XPS) analysis and Fourier-transform infrared spectroscopy(FT-IR). Therefore, it can be concluded that the plasma treatment process is an effective method to improve adhesion of the recycled plastic film-based aggregates and cement paste.

The effect of plasma treatment to improve adhesion strength of parylene-C coated medical grade SUS304 (Parylene-C 코팅된 의료용 SUS304 소재의 결합력 향상을 위한 플라즈마 처리 효과)

  • Kim, Dong-Guk;Song, Tae-Ha;Jeong, Yong-Hoon;Kang, Kwan-Su;Yoon, Deok-kyu;Kim, Min-Uk;Woo, Young-Jae;Seo, Yo-Han;Kim, Kyung-Ah;Roh, Ji-hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.390-397
    • /
    • 2022
  • Parylene-C which was mainly used for industries such as electronics, machinery and semiconductors has recently been in the spotlight in the medical field due to its properties such as corrosion resistance and biocompatibility. In this study we intend to derive a plan to improve the bonding strength of Parylene-C coating with the SUS304 base material for medical use which can be applied to various medical fields such as needles, micro needles and in vitro diagnostic device sensors. Through plasma pretreatment the bonding strength between Parylene-C and metal materials was improved. It was confirmed that the coated surface was hydrophobic by measuring the contact angle and the improvement of the surface roughness of the sample manufactured through CNC machining was confirmed by measuring the surface roughness with SEM. Through the above results, it is thought that it will be effective in increasing usability and reducing pain in patients by minimizing friction when inserting medical devices and in contact with skin. In addition it can be applied to various application fields such as human implantable stents and catheters, and is expected to improve the performance and lifespan of medical parts.

Evaluation of Field Applicability of Slope of Improved Soil for Ground Stabilizer (지반안정재 개량토의 토사 비탈면 현장 적용성 평가)

  • Lee, Kang-Il;Park, Seong-Bak;Choi, Min-Ju
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.35-44
    • /
    • 2021
  • This research studies the stabilization method for improved soil sloped through the on-site application of Paper Flyash ground stabilizers. The target strength required for improved soil is 500 kPa, and the compressive strength for the slope surface needs to be less than 1,000 kPa after the improvement in order to plant vegetation. To meet this condition, we mixed soil from the site and the ground stabilization material, which is the main material for surface improvement material, performed mixing design and conducted various tests including strength test, permeability test and plantation test. After analyzing the results of the compression test on improved soil slope, we proposed soil constants for the improved soil. In order to evaluate the applicability of the improved soil on the slope, the site construction was carried out on the collapsed slope and the reinforcement evaluation of the surface of the improvement soil was conducted. The stability was not secured before the reinforcement, but the test shows after the reinforcement with improved soil, the safety rate is secured up to 48 hours during the raining period. In addition, the compressive strength of the improved soil at the site was secured at more than 200 kPa adhesion as planned, and the soil hardness test result was also found to be within the specified value of 18-23 mm, which increased the resistance to rainfall and ability to grow plant on the surface for improved soil.

Surface Roughness of Dentin and Formation of Early Cariogenic Biofilm after Silver Diamine Fluoride and Potassium Iodide Application (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 상아질 표면 거칠기와 초기 우식원성 세균막 형성)

  • Haeni, Kim;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • This study aimed to evaluate the effect of silver diamine fluoride (SDF) and potassium iodide (KI) on the formation of cariogenic biofilm and surface roughness in vitro. A total of 48 bovine dentin specimens with artificially induced caries were prepared and divided into 3 groups of 16: untreated control, SDF-treated, and SDF-treated followed by KI (SDFKI). Ten specimens from each group were used to observe microbial adhesion. Multispecies cariogenic biofilms including Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens. Microbes were cultured for 24 hours, and the colony-forming unit was calculated. The remaining specimens were observed by atomic force microscope and scanning electron microscope (SEM). The number of bacteria was significantly lower in the SDF and SDFKI groups. KI did not inhibit the antibacterial activity of SDF significantly. SEM images showed particles generated after SDF and SDFKI application were deposited on the dentin, but there was no significant difference in surface roughness between the 3 groups. This study confirmed that SDF and SDFKI application did not have a significant effect on the surface roughness of dentin, but effectively inhibited the formation of the early cariogenic bacterial film after 24 hours compared to the control.

Evaluation of Biocompatibility of Extracorporeal Circuit - Development of a Quantification Technique using in-vivo Injection of Tc99m Radioactive Platelets - (체외순환도관의 혈액적합성 평가 - 방사선 동위원소(Tc99m) 활성화 혈소판의 생체 내 주입을 이용한 정량분석법의 개발 -)

  • Lee, Sung-Ho;Sun, Kyung;Choi, Jai-Geol;Son, Ho-Sung;Jung, Jae-Seung;Ahn, Sang-Soo;Oh, Hye-Jung;Lee, Whan-Sung;Lee, Hye-Won;Kim, Kwang-Taik;Jeong, Yoon-Seop;Kim, Young-Ha;Kim, Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.35 no.3
    • /
    • pp.171-176
    • /
    • 2002
  • Background: Blood-foreign interaction cause activation of coagulation and inflammatory process that may lead to multiorgan dysfunction and determine the surgical outcomes. Of the methods for assessing the biocompatibility, the platelet adhesion study is considered as the most valuable evaluation step in blood-foreign interaction. As the most studies have used in-vitro or ex-vivo conditions, we have developed a technique of quantification for platelet adhesion on the blood contact surface by using in-vivo injection of radioactive platelets. Material and Method: A coupled bypass circuit was designed to connect the proximal and descending thoracic aorta in 6 piglets(20∼25 Kg). One side of the circuit tube was consisted of a heparin coated PVC tube(10mm in ID, n=6, Experimental group), and the other, a non-heparin coated PVC tube(10mm in ID, n=6, Control group). After cannulation, the blood was circulated through the circuit for 2 hours. Platelet concentrate was prepared from homologous pig blood 24 hours before the experiment. The platelet concentrate was incubated with Tc-99m-HMPAO for 30 min and then centrifuged for 10 min. The supernatant was discarded and the radio-labeling efficacy was measured. The radio-labeled platelet concentrate was mixed with the autologous plasma to make the volume 5 ml, and the mixture was injected intravenously into the experimental animal. After 2 hour circulation, 5 pieces of the specimen(10mm in length each) were obtained from each PVC tube. The radioisotopes were counted with a gamma counter(Cobra ll, Packard, USA), and the ratio of radioisotope count was compared between the control and experimental group. Result: The radioisotope count number was 537.3221.1 Ci/min in the control group and 311.1 184.5 Ci/min in the experimental group(p=0.0104). The ratio between the groups was 1 to 0.58 (p=0.004). Conclusion: In vivo quantification using technetium-99m-HMPAO labeled platelets is simple and reproducible in evaluating platelet adhesion on a foreign surface. We suggest this technique to be a useful tool for blood compatibility test.

A Study on Detection Characteristics of Cadmium and Lead for Bi Nanopowder-Labeled Electrode (비스무스 나노분말 표지 전극의 카드뮴/납 검출특성에 관한 연구)

  • Lee, Gyeoung-Ja;Kim, Hyoun-Jin;Lee, Hi-Min;Lee, Sang-Hoon;Lee, Min-Ku;Lee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.393-398
    • /
    • 2008
  • Trace analysis of Cd and Pb at surface modified thick film graphite electrode with Bi nanopowder has been carried out using square-wave anodic stripping voltammetry (SWASV) technique. Bi nanopowder synthesized by gas condensation (GC) method showed the size of $50{\sim}100$ nm with BET surface area, $A_{BET}=6.8m^{2}g^{-l}$. For a strong adhesion of the Bi nanopowder onto the screen printed carbon paste electrode, nafion solution was added into Bi-containing suspension. From the SWASV, it was found that the Bi nanopowder electrode exhibited a well-defined responses relating to the oxidations of Cd and Pb. The current peak intensity increased with increasing concentration of Cd and Pb. From the linear relationship between Cd/Pb concentrations and peak current, the sensitivity of the Bi nanopowder electrode was quantitatively estimated. The detection limit of the electrode was estimated to be $0.15{\mu}g/l$ and $0.07{\mu}g/l$ for Cd and Pb, respectively, on the basis of the signal-to-noise characteristics (S/N=3) of the response for the $1.0{\mu}g/l$ solution under a 10 min accumulation.