• Title/Summary/Keyword: Surcharge Load

Search Result 84, Processing Time 0.022 seconds

The Earth Pressure on the Effect of Surcharge Load at the Narrowly Backfilled Soil (좁은 공간 되메움 지반에서의 상재하 영향에 의한 토압)

  • 문창열;이종규
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.165-180
    • /
    • 1997
  • The structure such as underground external walls of buildings, conduit and box culvert supports the surcharge loads (point, strip and line loads) . The vertical and horizontal stresses in a soil mass depend on the backfill width and wall friction, etc. The investigations described in this paper is designed to identify the magnitude and the distributions of the lateral and vertical pressure which is occurred by the narrowly backfilled soil in an open cut by the surcharge loads. For these purposes, model tests were performed for various width of backfill in a model test box by considering the wall friction using carbon rods. The results of test were compared with the theories of Weissenbach and VS Army Code and also with the results of the numerical analysis using finite difference method which introduces Mohr-Coulomb failure hypothesis.

  • PDF

Evaluation of Surcharge toads Acting in Backfilled Space (되메움 공간의 상재하중 영향평가에 관한 연구)

  • Moon Chang-Yeul;Kim Hee-Dong;Choi Heon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.167-176
    • /
    • 2004
  • Underground structures will be affected by the additional surcharge loads such as traffic load et al. Terzaghi (1956) suggested the equation on the influences of surcharge loads in vertically backfilled spaces. In field, the shapes of backfill spaces are not always formed vertically. Then the Terzagi (1956) equation is not suitable to use because of boundary condition. This study suggests equation to calculate the stress in backfilled space caused by surcharge loads when the backfilled space is sloped symmetrically. The suggested equation is verified by carbon box test and numerical analysis. The experimental results show good agreement with the suggested equation but the numerical analysis result shows a little disagreement. The differences are estimated to be caused by the fact that ground made by carbon rod has become more dense and internal frction and wall friction has increased itself as surcharge load is added but that this increase can not be considered in the numerical analysis. The suggested equation shows good agreement with Terzaghi (1956) equation in case of sloped backfill ground. According to the results, it is considered that the suggested equation can be applied not only to sloped space but also to vertical space. Further investigation using full scale experiment is needed.

Experimental Study on Lateral Flow Behavior of Soft Ground due to Embankment (성토로 인한 연약지반의 측방유동 거동에 관한 실내모형실험)

  • You, Seung-Kyong;Kim, Jae-Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.43-51
    • /
    • 2011
  • Pile-supported embankment is one of the reinforcing methods to minimize damage due to the severe subsidence and lateral flow when soft clay ground is supported with embankment. pile-supported embankment mainly penetrates soft ground into the bearing stratum in order to support surcharge load which minimizes the subsidence and lateral flow due to the surcharge load. The aim of this research is to review quantitatively reinforcing effect of pile-supported embankment which is installed in soft clay ground. From the model test, it reproduced the ground movement with regard to the non-reinforced and reinforcing embankment-pile and also analyzed stabilizing effects of lateral flow due to the pile-supported embankment. With regard to the case of installing pile-supported embankment, its were analyzed stabilizing effects of lateral flow in cases of quick-load and slow-load to make different surcharge load.

Settlement Characteristics of Soft Ground Applying the Suction Drain Method (석션드레인공법을 적용한 연약지반의 침하 특성)

  • Han, Sang-Jae;Yoo, Han-Kyu;Kim, Byung-Il;Kim, Soo-Sam
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.15-27
    • /
    • 2013
  • A vacuum pressure method has been developed to solve many problems in the conventional surcharge method such as embankments, and its application has increased in the country. Recently, to control target settlements in the field, there have been many studies on the comparison of settlements between vacuum pressure method and surcharge load method in the same conditions. In this study, the settlement characteristics of soil subjected to vacuum pressure and surcharge pressure are discussed. The results indicate that if vacuum pressure is applied to the improvement of soft ground, there will be inward lateral displacement and the vacuum pressure will induce generally less settlement than a surcharge load of the same magnitude. The range of settlement reduction ratio is 0.54~0.67 based on Hooke's law, 0.91 based on field cases, 0.81 based on laboratory oedometer tests, 0.75 based on the theory of elasticity and coefficient of volumetric compressibility and 0.77~0.93 in its recent applications to the thick soft ground.

A Case Study on the Suction Drain Method for Soft Ground Improvement (연약지반 개량을 위한 석션드레인공법의 적용 사례)

  • Kim, Do-Hyung;Kim, Byung-Il;Han, Sang-Jae;Lee, Jae-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.743-749
    • /
    • 2009
  • In this study, the field test for suction drain method which does not require a surcharge load and a sealing sheet was performed at west seashore's site constructed by the dredged and reclaimed clay. The improvements of soft ground by suction drain method was analyzed by the results of real-time field measurement, SPT(Standard Penetration Test) and laboratory tests. The results indicated that the soft ground improvement is effective the vertical drain method used with vacuum pressure rather than surcharge load with considering settlements, dissipation of pore water pressure and shear strength.

  • PDF

Stratum Division Effect of Consolidation Settlement Formula Using Compression Index (압축지수를 이용한 압밀침하량 계산식의 압밀층 두께 분할효과)

  • Kim, Khi-Woong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.49-54
    • /
    • 2012
  • The final consolidation settlement is important factor in soft ground improvement because of settlement management and completion time. The compression index, which is slope of primary consolidation curve, is commonly used for the calculation of final consolidation settlement in clay layer. The existing final consolidation settlement is calculated in total consolidation layer that is assumed as one layer. This paper describes analysis result of the acquired settlement, when the consolidation layer is divided as several layer. The consolidation settlement increased according to increase of the divided layer and then it is converged. This result was unrelated to surcharge load. The division effect of layer is very high when the surcharge load is less than the consolidation layer thickness. The division effect of layer is 1.2 to 1.4 in the general surcharge load, and this value can be apply as safety factor in the calculation of final consolidation settlement.

Model Tests on the Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers (보강재 설치 간격에 따른 지오그리드 보강토옹벽의 변형거동에 관한 모형실험)

  • 조삼덕;안태봉;이광우;오세용
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.109-116
    • /
    • 2004
  • The model tests are conducted to assess the behavior characteristics of geogrid reinforced soil walls according to different surcharge pressures and reinforcement spacings. The models are built in the box having dimension, 100cm tall, 140cm long, and 100cm wide. The reinforcement used is geogrid(tensile strength 2.26t/m). Decomposed ganite soil(SM) is used as a backfill material. The strain gauges and LVDTs are Installed to obtain the strain in the reinforcements and the displacements of the wall face. From the results, it can be concluded that the more the reinforcement tensile strength increases, the more the wall displacements and the geogrid strains decreases. The maximum wall displacements and geogrid strains of the model walls occur due to the uniform surcharge pressure at the 0.7H from the bottom of the wall. The horizontal displacements of the wall face nonlinearly increase with the increase of surcharge pressures, and this nonlinear behavior is significantly presented for larger surcharge due to the nonlinear tensile strength-strain relationship of the reinforcements.

3D stability of pile stabilized stepped slopes considering seismic and surcharge loads

  • Long Wang;Meijuan Xu;Wei Hu;Zehang Qian;Qiujing Pan
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.639-652
    • /
    • 2023
  • Stepped earth slopes incorporated with anti-slide piles are widely utilized in landslide disaster preventions. Explicit consideration of the three-dimensional (3D) effect in the slope design warrants producing more realistic solutions. A 3D limit analysis of the stability of pile stabilized stepped slopes is performed in light of the kinematic limit analysis theorem. The influences of seismic excitation and surcharge load are both considered from a kinematic perspective. The upper bound solution to the factor of safety is optimized and compared with published solutions, demonstrating the capability and applicability of the proposed method. Comparative studies are performed with respect to the roles of 3D effect, pile location, pile spacing, seismic and surcharge loads in the safety assessments of stepped slopes. The results demonstrate that the stability of pile reinforced stepped slopes differ with that of single stage slopes dramatically. The optimum pile location lies in the upper portion of the slope around Lx/L = 0.9, but may also lies in the shoulder of the bench. The pile reinforcement reaches 10% universally for a looser pile spacing Dc/dp = 5.0, and approaches 70% when the pile spacing reaches Dc/dp = 2.0.

Numerical study on stability and deformation of retaining wall according to groundwater drawdown

  • Hyunsung Lim;Jongjeon Park;Jaehong Kim;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.195-202
    • /
    • 2023
  • In this study, the ground settlement in backside of retaining wall and the behavior of the retaining wall were analyzed according to the method of groundwater drawdown due to excavation by using two-dimensional(2D) finite element analysis. Numerical analysis was performed by applying 1) fixed groundwater level, 2) constant groundwater drawdown, and 3) transient groundwater drawdown. In addition, the behavior of the retaining wall according to the initial groundwater level, ground conditions, and surcharge pressure in backside of retaining wall was evaluated. Based on the numerical analysis results, it was confirmed that when the groundwater level is at 0.1H from the ground surface (H: Excavation soil height), the wall displacement and ground settlement are not affected by the method of groundwater drawdown, regardless of soil conditions (dense or loose) and surcharge pressure. On the other hand, when the groundwater level is at 0.5H from the ground surface, the method of groundwater drawdown was found to have a significant effect on wall displacement and ground settlement. In this case, the difference in ground settlement presents by up to 4 times depending on the method of groundwater drawdown, and the surcharge load could increase the ground settlement by up to 1.5 times.