DOI QR코드

DOI QR Code

3D stability of pile stabilized stepped slopes considering seismic and surcharge loads

  • Long Wang (School of Environment and Civil Engineering, Jiangnan University) ;
  • Meijuan Xu (Mechanical Engineering Department, Zhejiang University City College) ;
  • Wei Hu (State Key Laboratory of Geohazard Prevention and Geoenvironmental Protection, Chengdu University of Technology) ;
  • Zehang Qian (Department of Civil Engineering, Central South University) ;
  • Qiujing Pan (Department of Civil Engineering, Central South University)
  • Received : 2021.07.13
  • Accepted : 2023.02.23
  • Published : 2023.03.25

Abstract

Stepped earth slopes incorporated with anti-slide piles are widely utilized in landslide disaster preventions. Explicit consideration of the three-dimensional (3D) effect in the slope design warrants producing more realistic solutions. A 3D limit analysis of the stability of pile stabilized stepped slopes is performed in light of the kinematic limit analysis theorem. The influences of seismic excitation and surcharge load are both considered from a kinematic perspective. The upper bound solution to the factor of safety is optimized and compared with published solutions, demonstrating the capability and applicability of the proposed method. Comparative studies are performed with respect to the roles of 3D effect, pile location, pile spacing, seismic and surcharge loads in the safety assessments of stepped slopes. The results demonstrate that the stability of pile reinforced stepped slopes differ with that of single stage slopes dramatically. The optimum pile location lies in the upper portion of the slope around Lx/L = 0.9, but may also lies in the shoulder of the bench. The pile reinforcement reaches 10% universally for a looser pile spacing Dc/dp = 5.0, and approaches 70% when the pile spacing reaches Dc/dp = 2.0.

Keywords

Acknowledgement

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 52208345, 52168046, 41867034, 42272312), the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2022K002), the Natural Science Foundation of Jiangsu Province (Grant No. BK20210479) and the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety (Grant No. 2020ZDK010). The authors appreciate all the financial supports greatly.

References

  1. Chen, B., Gao. Y., Sun, D. and Li, J. (2021), "Simple testing method for measuring the triaxial stress-strain relations of unsaturated soils at high suctions", Geotech. Test J., 44(2), 20190278. https://doi.org/10.1520/GTJ20190278.
  2. Chen, B., Peng, F., Zhang, L. and Sun, D. (2023), "Investigation on swelling characteristics of GMZ bentonite with different initial water contents", Ann. Nucl. Energy, 181, 109565. https://doi.org/10.1016/j.anucene.2022.109565.
  3. Chen, W.F. (1975). Limit analysis and soil plasticity. Amsterdam: Elsevier.
  4. Deng, D.P., Li, L. and Zhao, L.H. (2017), "Limit-equilibrium method for reinforced slope stability and optimum design of antislide micropile parameters", Int. J. Geomech., 17(2), 06016019. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000722.
  5. Deng, D.P., Li, L. and Zhao, L.H. (2019), "Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design", Geomech. Eng., 17(2), 181-194. http://dx.doi.org/10.12989/gae.2019.17.2.181.
  6. Ersoy, H., Kaya, A., Angn, Z. and Dag, S. (2020), "2D and 3D numerical simulations of a reinforced landslide: A case study in NE Turkey", J. Earth Syst. Sci., 129(1), 82. https://doi.org/10.1007/s12040-020-1343-y.
  7. Gao, Y.F., Ye, M. and Zhang, F. (2015), "Three-dimensional analysis of slopes reinforced with piles", J. Centr. South U., 22(6), 2322-2327. https://doi.org/10.1007/s11771-015-2757-6.
  8. Gonzalez, Y.T., Schaefer, V.R. and Rollins, D.K. (2020), "Statistical assessment of factor of safety for pile-reinforced slopes", J. Geotech. Geoenviron. Eng., 146(9), 04020083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002323.
  9. Hajiazizi, M. and Heydari, F. (2019), "Where is the optimal pile location on earth slopes?", KSCE J. Civ. Eng., 23(3), 1087-1094. https://doi.org/10.1007/s12205-019-1979-9.
  10. He, Y., Hazarika H., Yasufuku, N., Han, Z. and Li, Y.G. (2015), "Three-dimensional limit analysis of seismic displacement of slope reinforced with piles", Soil Dyn. Earthq. Eng., 77, 446-452. https://doi.org/10.1016/j.soildyn.2015.06.015.
  11. Hong, G.Q., Liu, W.H., Li, W.G., Hu, P., Huang, S.H. and Kong, G.Q. (2023), "Experimental investigation on expansion characteristics and strength of carbonating reactive magnesia solidified clay", Case Stud. Constr. Mat., 18, e01918. https://doi.org/10.1016/j.cscm.2023.e01918.
  12. Ito, T. and Matsui, T. (1975), "Methods to estimate lateral force acting on stabilizing piles", Soils Found., 15(4), 43-59. https://doi.org/10.3208/sandf1972.15.4_43.
  13. Lam, L. and Fredlund, D.G. (1993), "A general limit equilibrium model for three-dimensional slope stability analysis", Can. Geotech. J., 30(6), 905-919. https://doi.org/10.1139/t93-089.
  14. Li, Q., Wang, Y.M., Zhang, K.B., Yu, H. and Tao, Z.Y. (2020), "Field investigation and numerical study of a siltstone slope instability induced by excavation and rainfall", Landslides, 17(6), 1485-1499. https://doi.org/10.1007/s10346-020-01396-5.
  15. Lim, K., Li, A.J., and Lyamin, A.V. (2015), "Three-dimensional slope stability assessment of two-layered undrained clay", Comput. Geotech., 70, 1-17. https://doi.org/10.1016/j.compgeo.2015.07.011.
  16. Liu, D.Z., Hu, X.L., Zhou, C., Xu, C., He, C.C., Zhang, H. and Wang, Q. (2020), "Deformation mechanisms and evolution of a pile-reinforced landslide under long-term reservoir operation", Eng. Geol., 275, 105747. https://doi.org/10.1016/j.enggeo.2020.105747.
  17. Liu, S.Y., Su, Z.N., Li, M. and Shao, L.T. (2020), "Slope stability analysis using elastic finite element stress fields", Eng. Geol., 273, 105673. https://doi.org/10.1016/j.enggeo.2020.105673.
  18. Liu, Z.P., Liu, J., Bian, K. and Ai, F. (2019), "Three-dimensional limit equilibrium method based on a TIN sliding surface", Eng. Geol., 262, 105325. https://doi.org/10.1016/j.enggeo.2019.105325.
  19. Michalowski, R.L. and Drescher, A. (2009), "Three-dimensional stability of slopes and excavations", Geotechnique, 59(10), 839-850. https://doi.org/10.1680/geot.8.P.136.
  20. Pan, Q.J., Chen, Z.Y., Wu, Y.M., Dias, D. and Oreste, P. (2021), "Probabilistic tunnel face stability analysis: A comparison between LEM and LAM", Geomech. Eng., 24(4), 399-406. https://doi.org/10.12989/gae.2021.24.4.399.
  21. Pang, H.P., Nie, X.P., Sun, Z.B., Hou, C.Q., Dias, D. and Wei, B.X. (2020), "Upper bound analysis of 3D-reinforced slope stability subjected to pore-water pressure", Int. J. Geomech., 20(4), 06020002. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001636.
  22. Park, D. and Michalowski, R.L. (2021), "Three-dimensional stability assessment of slopes in intact rock governed by the Hoek-Brown failure criterion", Int. J. Rock Mech. Min., 137, 104522. https://doi.org/10.1016/j.ijrmms.2020.104522.
  23. Rao, P.P., Wu, J. and Mo, Z.H. (2020), "3D limit analysis of the transient stability of slope during pile driving in nonhomogeneous and anisotropic soil", Adv. Civ. Eng., 2020(9), 1-10. https://doi.org/10.1155/2020/7560219.
  24. Sobhey, M., Shahien, M., Sawwaf El, M. and Farouk, A. (2021), "Analysis of clay slopes with piles using 2D and 3D FEM", Geotech. Geol. Eng., 39, 2623-2631. https://doi.org/10.1007/s10706-020-01627-5.
  25. Son, S.W., Im, J.C., Seo, M.S. and Hong, S.W. (2021), "Analysis of the correlation between the velocity speed of high-speed railways and the suppressing effect of lateral displacement of retaining wall according to the arrangement of stabilizing piles", J. Korean Geosynth. Soc., 20(1), 1-8. https://doi.org/10.12814/jkgss.2021.20.1.001.
  26. Stark, T.D. and Eid, H.T. (1998), "Performance of three-dimensional slope stability methods in practice", J. Geotech. Geoenviron. Eng., 124(11), 1049-1060. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1049). 
  27. Sun, C.W., Chai, J.R., Xu, Z.G. and Qin, Y. (2017), "3D stability charts for convex and concave slopes in plan view with homogeneous soil based on the strength-reduction method", Int. J. Geomech., 17(5), 06016034. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000809.
  28. Wang, L., Hu, W., Gao, Y., Zhou, E.Q., Li, J., Chen, G.X, (2023) "Estimation of 3D earth pressure with inclined backfill surface considering seismic loads and suction effects", Int. J. Numer. Anal. Met., 1-14. http://doi.org/10.1002/nag.3499.
  29. Wang, L., Hu. W., Sun, D.A. and Li, L. (2019), "3D stability of unsaturated soil slopes with tension cracks under steady infiltrations", J. Numer. Anal. Met. Geomech., 43(6), 1184-1206. https://doi.org/10.1002/ nag.2889.
  30. Wang, L., Liu, W.H., Hu, W., Li, W.G. and Sun, D.A. (2021a), "Effects of seismic force and pore water pressure on stability of 3D unsaturated hillslopes", Nat. Hazards, 105(2), 2093-2116. https://doi.org/10.1007/s11069-020-04391-0.
  31. Wang, L., Sun D.A., Yao, Y.P., Wu, L.Z. and Xu, Y.F. (2020), "Kinematic limit analysis of three-dimensional unsaturated soil slopes reinforced with a row of piles", Comput. Geotech., 120: 103428. https://doi.org/10.1016/j.compgeo.2019.103428.
  32. Wang, L., Xu, M.J., Li, J., Liu, W.H., and Sun, D.A. (2021b), "A new method for determination of 3D active earth pressure of unsaturated backfills", KSCE J. Civ. Eng., 25(12), 4631-4645. https://doi.org/10.1007/s12205-021-0508-9.
  33. Zhao, L.H., Jiao, K.F., Zuo, S., Yu, C.H. and Tang, G.P. (2020), "Pseudo-static stability analysis of wedges based on the nonlinear barton-bandis failure criterion", Geomech. Eng., 20(4), 287-297. https://doi.org/10.12989/gae.2020.20.4.287.
  34. Zheng, L., Li. L. and Li, J.P. (2020), "Development of three-dimensional failure mechanisms and genetic algorithm for limit analysis of two-layer slopes", Nat. Hazards, 103(3), 3181-3212. https://doi.org/10.1007/s11069-020-04126-1.
  35. Zhong, W., Yang, T., He, N. and Cosgrove, T. (2019), "Load-computational methods of anti-slide piles", Cluster Comput., 22, S8529-S8539. https://doi.org/10.1007/s10586-018-1893-9.