Classification and Regression Tree (CART), SVM (Support Vector Machine) 및 k-nearest neighbor classification (kNN)과 같은 기존 기계 학습 기반 감정 분석 방법은 정확성이 떨어졌습니다. 본 논문에서는 개선 된 kNN 분류 방법을 제안한다. 개선 된 방법 및 데이터 정규화를 통해 정확성 향상의 목적이 달성됩니다. 그 후, 3 가지 분류 알고리즘과 개선 된 알고리즘을 실험 데이터에 기초하여 비교 하였다.
Journal of the Korean Data and Information Science Society
/
제23권6호
/
pp.1045-1054
/
2012
서포트벡터 기계는 분류 및 비선형 함수추정에서 유용하게 사용되고 있는 통계적 기법이다. 본 논문에서는 두 개의 입력변수와 회귀함수의 단조 관계를 이용하여 단조 서포트벡터기계를 제안하고, Kaplan-Meier의 방법에 의해서 생존함수의 추정값이 주어진 경우 제안된 방법을 이용하여 생존 함수를 평활하는 방법 또한 제안한다. 모의실험에서는 실제 생존함수를 이용하여 Kaplan-Meier의 방법에 의한 생존함수의 추정값과의 성능을 비교함으로써 제안된 방법의 우수성을 보이기로 한다.
Journal of the Korean Data and Information Science Society
/
제20권5호
/
pp.879-886
/
2009
본 논문에서는 시장점유율을 추정할 때 최소제곱 서포트벡터기계를 적용하여 보통최소제곱과 최소제곱 서포트벡터기계의 성능을 비교하고자 한다. 최소제곱 서포트벡터기계는 커널 함수를 사용함으로 고차원의 특징 공간에서 선형회귀로 재구성함으로 비선형 회귀문제까지도 해결할 수 있는 장점을 가지고 있다. 그래서 본 논문에서는 비모수 기법인 최소제곱 서포트벡터기계를 이용하여 시장점유율 모형을 추정하고자 한다. 최소제곱 서포트벡터기계를 기반으로 한 모형 추정은 시장점유율 유인모형을 해결하기 위한 좋은 대안이 된다. 최소제곱 서포트벡터기계의 성능을 평가하기 위해 비교 실험에서는 한국 자동차 시장에서 차량 판매량을 이용하여 브랜드별 시장점유율 모형을 추정하였다.
Communications for Statistical Applications and Methods
/
제6권3호
/
pp.813-820
/
1999
Supprot vector machine(SVM) is a new and very promising regression and classification technique developed by Vapnik and his group at AT&T Bell Laboratories. in this paper we provide a brief overview of SVM for regression. Furthermore we describe Bayesian model selection based on macKay's evidence framework for SVM regression.
Communications for Statistical Applications and Methods
/
제6권3호
/
pp.843-848
/
1999
Support vector machine(SVM) is a new and very promising classification and regression technique developed by Bapnik and his group at AT&T Bell laboratories. However it has failed to establish itself as common machine learning tool. This is partly due to the fact that SVM is not easy to implement and its standard implementation requires the optimization package for quadratic programming. In this paper we present simple iterative Kernl Adatron algorithm for nonparametric regression which is easy to implement and guaranteed to converge to the optimal solution and compare it with neural networks and projection pursuit regression.
Journal of information and communication convergence engineering
/
제21권3호
/
pp.225-232
/
2023
Owing to advancements in intelligent transportation systems (ITS) and artificial-intelligence technologies, various machine-learning models can be employed to simulate and predict the number of traffic accidents under different weather conditions. Furthermore, we can analyze the relationship between weather and traffic accidents, allowing us to assess whether the current weather conditions are suitable for travel, which can significantly reduce the risk of traffic accidents. In this study, we analyzed 30000 traffic flow data points collected by traffic cameras at nearby intersections in Washington, D.C., USA from October 2012 to May 2017, using Pearson's heat map. We then predicted, analyzed, and compared the performance of the correlation between continuous features by applying several machine-learning algorithms commonly used in ITS, including random forest, decision tree, gradient-boosting regression, and support vector regression. The experimental results indicated that the gradient-boosting regression machine-learning model had the best performance.
이 연구는 벤젠과 프로필렌의 기상반응을 통해 쿠멘을 생산하는 쿠멘 생산 공정의 경제성 최적화에 대한 것이다. 최적화의 목적함수는 제품 판매 이득에서 자본비용, 유틸리티 비용, 원료 비용을 뺀 연간 조업이득이고, 설계변수는 6개이다. 설계변수의 변화에 따른 조업이득의 계산을 위해 Unisim Design과 Matlab을 연동하였다. 최적화는 3단계로 수행되었다. 설계변수를 샘플링한 후 조업이득 데이터를 얻고, 이 데이터로부터 설계변수와 조업이득의 관계를 추정 모델로 표현하고, 이 모델을 이용하여 최적화하였다. 추정모델로는 반응표면법에서 사용되는 2차 회귀 다항식과 비선형 모델인 support vector regression을 비교하였다. 설계변수의 샘플링 방법으로는 중심합성계획과 Hammersley 순차 추출법을 비교하였다. 각각 얻어진 모델을 이용한 최적화 결과, 추정방법으로는 SVR이, 샘플링 방법은 Hammersley 순차추출법이 더 정확하였다. 최적화된 조업이득은 연간 17.96 MM$로, 기준 조건에서의 연간 16.04 MM$에 비해 12% 증가하였다.
본 논문에서는 준지도 지지 벡터 회귀 모델(semi-supervised support vector regression)을 이용한 반응 모델링(response modeling)을 제안한다. 반응 모델링의 성능 및 수익성을 높이기 위해, 고객 데이터 셋의 대부분을 차지하는 레이블이 존재하지 않는 데이터를 기존 레이블이 존재하는 데이터와 함께 학습에 이용한다. 제안하는 알고리즘은 학습 복잡도를 낮은 수준으로 유지하기 위해 일괄 학습(batch learning) 방식을 사용한다. 레이블 없는 데이터의 레이블 추정에서 불확실성(uncertainty)을 고려하기 위해, 분포추정(distribution estimation)을 하여 레이블이 존재할 수 있는 영역을 정의한다. 그리고 추정된 레이블 영역으로부터 오버샘플링(oversampling)을 통해 각 레이블이 없는 데이터에 대한 레이블을 복수 개 추출하여 학습 데이터 셋을 구성한다. 이 때, 불확실성의 정도에 따라 샘플링 비율을 다르게 함으로써, 불확실한 영역에 대해 더 많은 정보를 발생시킨다. 마지막으로 지능적 학습 데이터 선택 기법을 적용하여 학습 복잡도를 최종적으로 감소시킨다. 제안된 반응 모델링의 성능 평가를 위해, 실제 마케팅 데이터 셋에 대해 다양한 레이블 데이터 비율로 실험을 진행하였다. 실험 결과 제안된 준지도 지지 벡터 회귀 모델을 이용한 반응 모델이 기존 모델에 비해 더 높은 정확도 및 수익을 가질 수 있다는 점을 확인하였다.
유연날개의 공력 및 구조 설계값을 설계 변수로 하여 정적 상태에서의 정적 공탄성해석 및 최적화를 수행하였다. 정적 공탄성해석과 최적화를 위해 상용 해석소프트웨어들이 연계된 강건한 다분야 최적설계 시스템을 개발하였다. 최적화 설계변수로는 가로세로비, 테이퍼비, 후퇴각과 날개 위아래 스킨 두께를 설정하였다. 전역적 다목적 최적화를 위해 실수기반 적응영역 다목적 유전자 알고리즘을 적용하였으며 계산시간을 줄이기 위해 메타모델로 서포트벡터회귀 기법을 적용하였다. 유연날개에 대한 파레토 결과 분석을 통해 최대 항속시간과 최소 중량에 대한 최적 결과를 확인하였다.
Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
Nuclear Engineering and Technology
/
제42권2호
/
pp.219-230
/
2010
In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.