• 제목/요약/키워드: Support vector regression

검색결과 549건 처리시간 0.029초

텍스트 분류 기법의 발전 (Enhancement of Text Classification Method)

  • 신광성;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.155-156
    • /
    • 2019
  • Classification and Regression Tree (CART), SVM (Support Vector Machine) 및 k-nearest neighbor classification (kNN)과 같은 기존 기계 학습 기반 감정 분석 방법은 정확성이 떨어졌습니다. 본 논문에서는 개선 된 kNN 분류 방법을 제안한다. 개선 된 방법 및 데이터 정규화를 통해 정확성 향상의 목적이 달성됩니다. 그 후, 3 가지 분류 알고리즘과 개선 된 알고리즘을 실험 데이터에 기초하여 비교 하였다.

  • PDF

단조 서포트벡터기계를 이용한 카플란-마이어 생존함수의 평활 (Smoothing Kaplan-Meier estimate using monotone support vector regression)

  • 황창하;심주용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1045-1054
    • /
    • 2012
  • 서포트벡터 기계는 분류 및 비선형 함수추정에서 유용하게 사용되고 있는 통계적 기법이다. 본 논문에서는 두 개의 입력변수와 회귀함수의 단조 관계를 이용하여 단조 서포트벡터기계를 제안하고, Kaplan-Meier의 방법에 의해서 생존함수의 추정값이 주어진 경우 제안된 방법을 이용하여 생존 함수를 평활하는 방법 또한 제안한다. 모의실험에서는 실제 생존함수를 이용하여 Kaplan-Meier의 방법에 의한 생존함수의 추정값과의 성능을 비교함으로써 제안된 방법의 우수성을 보이기로 한다.

최소제곱 서포트벡터기계를 이용한 시장점유율 자료 분석 (Analysis of market share attraction data using LS-SVM)

  • 박혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.879-886
    • /
    • 2009
  • 본 논문에서는 시장점유율을 추정할 때 최소제곱 서포트벡터기계를 적용하여 보통최소제곱과 최소제곱 서포트벡터기계의 성능을 비교하고자 한다. 최소제곱 서포트벡터기계는 커널 함수를 사용함으로 고차원의 특징 공간에서 선형회귀로 재구성함으로 비선형 회귀문제까지도 해결할 수 있는 장점을 가지고 있다. 그래서 본 논문에서는 비모수 기법인 최소제곱 서포트벡터기계를 이용하여 시장점유율 모형을 추정하고자 한다. 최소제곱 서포트벡터기계를 기반으로 한 모형 추정은 시장점유율 유인모형을 해결하기 위한 좋은 대안이 된다. 최소제곱 서포트벡터기계의 성능을 평가하기 위해 비교 실험에서는 한국 자동차 시장에서 차량 판매량을 이용하여 브랜드별 시장점유율 모형을 추정하였다.

  • PDF

Bayesian Model Selection for Support Vector Regression using the Evidence Framework

  • Hwang, Chang-Ha;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.813-820
    • /
    • 1999
  • Supprot vector machine(SVM) is a new and very promising regression and classification technique developed by Vapnik and his group at AT&T Bell Laboratories. in this paper we provide a brief overview of SVM for regression. Furthermore we describe Bayesian model selection based on macKay's evidence framework for SVM regression.

  • PDF

Kernel Adatron Algorithm for Supprot Vector Regression

  • Kyungha Seok;Changha Hwang
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.843-848
    • /
    • 1999
  • Support vector machine(SVM) is a new and very promising classification and regression technique developed by Bapnik and his group at AT&T Bell laboratories. However it has failed to establish itself as common machine learning tool. This is partly due to the fact that SVM is not easy to implement and its standard implementation requires the optimization package for quadratic programming. In this paper we present simple iterative Kernl Adatron algorithm for nonparametric regression which is easy to implement and guaranteed to converge to the optimal solution and compare it with neural networks and projection pursuit regression.

  • PDF

Performance Comparison of Machine-learning Models for Analyzing Weather and Traffic Accident Correlations

  • Li Zi Xuan;Hyunho Yang
    • Journal of information and communication convergence engineering
    • /
    • 제21권3호
    • /
    • pp.225-232
    • /
    • 2023
  • Owing to advancements in intelligent transportation systems (ITS) and artificial-intelligence technologies, various machine-learning models can be employed to simulate and predict the number of traffic accidents under different weather conditions. Furthermore, we can analyze the relationship between weather and traffic accidents, allowing us to assess whether the current weather conditions are suitable for travel, which can significantly reduce the risk of traffic accidents. In this study, we analyzed 30000 traffic flow data points collected by traffic cameras at nearby intersections in Washington, D.C., USA from October 2012 to May 2017, using Pearson's heat map. We then predicted, analyzed, and compared the performance of the correlation between continuous features by applying several machine-learning algorithms commonly used in ITS, including random forest, decision tree, gradient-boosting regression, and support vector regression. The experimental results indicated that the gradient-boosting regression machine-learning model had the best performance.

쿠멘 생산 공정의 경제성 최적화를 위한 샘플링 및 추정법의 비교 (Comparison of Sampling and Estimation Methods for Economic Optimization of Cumene Production Process)

  • 백종배;이기백
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.564-573
    • /
    • 2014
  • 이 연구는 벤젠과 프로필렌의 기상반응을 통해 쿠멘을 생산하는 쿠멘 생산 공정의 경제성 최적화에 대한 것이다. 최적화의 목적함수는 제품 판매 이득에서 자본비용, 유틸리티 비용, 원료 비용을 뺀 연간 조업이득이고, 설계변수는 6개이다. 설계변수의 변화에 따른 조업이득의 계산을 위해 Unisim Design과 Matlab을 연동하였다. 최적화는 3단계로 수행되었다. 설계변수를 샘플링한 후 조업이득 데이터를 얻고, 이 데이터로부터 설계변수와 조업이득의 관계를 추정 모델로 표현하고, 이 모델을 이용하여 최적화하였다. 추정모델로는 반응표면법에서 사용되는 2차 회귀 다항식과 비선형 모델인 support vector regression을 비교하였다. 설계변수의 샘플링 방법으로는 중심합성계획과 Hammersley 순차 추출법을 비교하였다. 각각 얻어진 모델을 이용한 최적화 결과, 추정방법으로는 SVR이, 샘플링 방법은 Hammersley 순차추출법이 더 정확하였다. 최적화된 조업이득은 연간 17.96 MM$로, 기준 조건에서의 연간 16.04 MM$에 비해 12% 증가하였다.

준지도 지지 벡터 회귀 모델을 이용한 반응 모델링 (Response Modeling with Semi-Supervised Support Vector Regression)

  • 김동일
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권9호
    • /
    • pp.125-139
    • /
    • 2014
  • 본 논문에서는 준지도 지지 벡터 회귀 모델(semi-supervised support vector regression)을 이용한 반응 모델링(response modeling)을 제안한다. 반응 모델링의 성능 및 수익성을 높이기 위해, 고객 데이터 셋의 대부분을 차지하는 레이블이 존재하지 않는 데이터를 기존 레이블이 존재하는 데이터와 함께 학습에 이용한다. 제안하는 알고리즘은 학습 복잡도를 낮은 수준으로 유지하기 위해 일괄 학습(batch learning) 방식을 사용한다. 레이블 없는 데이터의 레이블 추정에서 불확실성(uncertainty)을 고려하기 위해, 분포추정(distribution estimation)을 하여 레이블이 존재할 수 있는 영역을 정의한다. 그리고 추정된 레이블 영역으로부터 오버샘플링(oversampling)을 통해 각 레이블이 없는 데이터에 대한 레이블을 복수 개 추출하여 학습 데이터 셋을 구성한다. 이 때, 불확실성의 정도에 따라 샘플링 비율을 다르게 함으로써, 불확실한 영역에 대해 더 많은 정보를 발생시킨다. 마지막으로 지능적 학습 데이터 선택 기법을 적용하여 학습 복잡도를 최종적으로 감소시킨다. 제안된 반응 모델링의 성능 평가를 위해, 실제 마케팅 데이터 셋에 대해 다양한 레이블 데이터 비율로 실험을 진행하였다. 실험 결과 제안된 준지도 지지 벡터 회귀 모델을 이용한 반응 모델이 기존 모델에 비해 더 높은 정확도 및 수익을 가질 수 있다는 점을 확인하였다.

Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화 (Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression)

  • 최원;박찬우;정성기;박현범
    • 한국항공우주학회지
    • /
    • 제43권7호
    • /
    • pp.601-608
    • /
    • 2015
  • 유연날개의 공력 및 구조 설계값을 설계 변수로 하여 정적 상태에서의 정적 공탄성해석 및 최적화를 수행하였다. 정적 공탄성해석과 최적화를 위해 상용 해석소프트웨어들이 연계된 강건한 다분야 최적설계 시스템을 개발하였다. 최적화 설계변수로는 가로세로비, 테이퍼비, 후퇴각과 날개 위아래 스킨 두께를 설정하였다. 전역적 다목적 최적화를 위해 실수기반 적응영역 다목적 유전자 알고리즘을 적용하였으며 계산시간을 줄이기 위해 메타모델로 서포트벡터회귀 기법을 적용하였다. 유연날개에 대한 파레토 결과 분석을 통해 최대 항속시간과 최소 중량에 대한 최적 결과를 확인하였다.

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.