References
- Upadhyaya, B. R., and E. Eryurek (1992), "Application of Neural Networks for Sensor Validation and Plant Monitoring", Nuclear Technology, 97, 170-176 (February 1992).
- Mott, Y., and R. W. King (1987), Pattern Recognition Software for Plant Surveillance, U.S. DOE Report.
- Wegerich, S. (2002), "Performance Comparison of Variable Selection and Grouping Algorithms", Technical Report, SmartSignal Corp.
- Fantoni, P., S. Figedy, and A. Racz (1998), "A Neuro- Fuzzy Model Applied to Full Range Signal Validation of PWR Nuclear Power Plant Data", FLINS-98, Antwerpen, Belgium.
- C. Cortes and V. Vapnik. Support vector networks, Machine Learning 20: 273-297, 1995.
- V. Vapnik. The Nature of Statistical Learning Theory, Springer Verlag, 1995.
- N. Zavaljevski and K. C. Gross. "Support Vector Machines for Nuclear Reactor State Estimation", ANS International Topical Meeting May 7-11, 2000, Pittsburgh, USA
- A. V. Gribok, J. W. Hines, R. E. Uhrig. "Use of Kernel Based Techniques For Sensor Validation In Nuclear Power Plants", NPIC&HMIT 2000, Washington, DC, November, 2000.
- Liu X, Chen HC, Liu TA, Li YL, Lu ZR, Lu WC. "Application of PCA-SVR to NIR prediction model for tobacco chemical composition", 2007 Dec; 27 (12):2460-3
- Xuexiang Jin, Yi Zhang, and Danya Yao. "Simultaneously Prediction of Network Traffic Flow Based on PCA-SVR", LNCS 4492, pp. 1022-1031, 2007
- X. G. Hua, Y. Q. Ni, J. M. Ko, F. ASCE and K. Y. Wong. "Modeling of Temperature-Frequency Correlation Using Combined Principal Component Analysis and Support Vector Regression Technique", journal of computing in civil engineering march/April 2007, 122-135
- V. N. Vapnik, The Nature of Statistical Learning Theory, New York: Springer, 1995.
- EPRI, "On-Line Monitoring of Instrument Channel Performance Volume 3: Applications to Nuclear Power Plant Technical Specification Instrumentation," Final Report # 1007930, EPRI, Palo Alto, CA. 2004
- Rencher, A. C. Methods of multivariate analysis, 2nd Ed., Wiley, New York (2002).
- M. G . Na, "A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denosing, PCA and SPRT," J. Korean Nucl. Soc., vol 33, no. 5, pp483-497, Oct. 2001.
- M. G. Na, H. Y. Yang, D. H. Lim, "A Soft-sensing Model for Feedwater Flow Rate Using Fuzzy Support Vector Regression," Nucl. Eng. Tech., vol 40, no. 1, pp69-76, Feb. 2008. https://doi.org/10.5516/NET.2008.40.1.069
- M. G. Na, I. J. Hwang, and Y. J. Lee, "Inferential Sensing and Monitoring for Feedwater Flowrate in Pressurized Water Reactors," IEEE Trans. Nucl. Sci., vol.53, no. 4, pp.2335-2342, 2006. https://doi.org/10.1109/TNS.2006.878159
- I. Y. Seo, and S. J. Kim, "An On-line Monitoring Technique Using Support Vector Regression and Principal Component Analysis" CIMCA 2008, Vienna, Austria, pp. 663-669. 2008.
- O. Omitaomu, M. K. Jeong, A. Badiru, and J. W. Hines, "On-Line Support Vector Regression Approach for the Monitoring of Motor Shaft Misalignment and Feedwater Flow Rate," IEEE Transactions on Systems, Man, Cybernetics, Part C, 37(5), 962-970. 2007. https://doi.org/10.1109/TSMCC.2007.900648
Cited by
- Prediction of Axial DNBR Distribution in a Hot Fuel Rod Using Support Vector Regression Models vol.58, pp.4, 2011, https://doi.org/10.1109/TNS.2011.2159738
- Empirical Modeling of Cryogenic System for Hybrid SFCL Using Support Vector Regression vol.26, pp.4, 2013, https://doi.org/10.1007/s10948-012-1965-7