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Abstract

Support vector machine(SVM) is a new and very promising classification and
regression technique developed by Vapnik and his group at AT&T Bell Laboratories.
However, it has failed to establish itself as common machine learning tool. This is
partly due to the fact that SVM is not easy to implement, and its standard
implementation requires the optimization package for quadratic programming. In this
paper we present simple iterative Kernel Adatron algorithm for nonparametric
regression which is easy to implement and guaranteed to converge to the optimal
solution, and compare it with neural networks and projection pursuit regression.

1. Kernel Adatron Algorithm

The foundations of SVM have been developed by Vapnik(1995) and are gaining popularity
due to many attractive features, and promising empirical performance. SVM has been
successfully applied to a number of real world problems such as handwritten character and
digit recognition, face detection, text categorization and object detection in machine vision.
These are all classification problems. In SVM there are two types, 1.e., support vector
classification(SVC) and support vector regression(SVR). SVM was developed to solve the
classification problem, but recently it has been extended to the domain of regression problems.
However, SVC can be viewed as a special case of SVR. For an overview of SVR, see
Gunn(1998), Smola & Scholkopf(1998), and Vapnik(1995, 1998).

SVC has proven to be highly effective for learning many real world datasets but has failed
to establish themselves as common machine learning tools. This is partly due to the fact that
this is not easy to implement, and their standard implementation requires the use of
optimization packages for quadratic programming(QP). SVR has been similarly hampered by
the same problem. In particular, SVM using QP is not useful for regression tasks for
problems with sample size much larger than 100. Campbell & Cristianini(1998) and Cristianini,
Campbell & Shawe-Taylor(1998) proposed Kernel Adatron(KA) algorithm for SVC which is easy
to implement and guaranteed to converge to the optimal solution. In this paper we present KA
algorithm for SVR.

1} This work was supported by Grant from Inje University, 1998
2) Dept. of Data Science, Inje University, Kyungnam, Korea.
3) Dept. of Statistical Information, Catholic University of Taegu-Hyosung, Kyungbuk, Korea.

_843_



844 Kyungha Seok, Changha Hwang, and Daehyun Cho

We will now illustrate the KA algorithm for SVR using gradient ascent. There is no loss of
generality that we just consider nonlinear SVR. Suppose we are given training data

{((x;v;), i=1,-,n}C¥ xR, where ¥ denotes the space of the input vectors, RY. Our

goal is to find a function f(x) that has at most & deviation from the actually obtained

targets v;’s for all the training data, and at the same time, is as flat as possible. The

nonlinear SVR solution, using an &-insensitive loss function, is given by
maximize — % 2 2 (a;— ai)Xa;j— a;)K(x,;, x;)— € 2 (a; + ai) + ﬁiy,-(a/,-— a;) (1)
1=17= 1= 1=

subject to Z(af,- —a)=0 and o, a; € [0, C].

For details, see Gunn(1998) and Smola & Scholkopf(1998). Here, K is kernel function. The
kernels often used are given below.
x - 2

Kix.y)=(x'y+ 1), K(x,y)=e¢ >

Here, p and o are kernel parameters. The idea of the kernel function is to enable operations
to be performed in the input space rather than the potentially high dimensional feature space.
This provides a way of addressing the curse of dimensionality. Solving the above equation

with these constraints determines the Lagrange multipliers, a;, @;, and the optimal regression

function is given by
f(x) = g(ai— ai)K(x;, x) + b.

So far we neglected the issue of computing b&. For details, see Smola and Scholkopf(1998).

In general, SVR training requires solving a QP problem which is a notoriously difficult
business. Furthermore, standard QP routines have substantial memory resource requirements
and large datasets require additional techniques such as chunking (breaking the QP problem
into a series of simpler QP tasks). KA algorithm can be derived from principles for SVR
optimal solution. In fact, this merge perceptron-like rules with kernel methods.

The most obvious way of maximizing a concave Lagrangian under linear constraints is
gradient ascent. The Lagrangian to be maximized is:

L(a) = — %Z‘Z‘(m— a; Wa;— &) )K(x;, ;) — Eg(amL ;) + gy,-(ai— ;).

We will maximize this Lagrangian using stochastic gradient ascent based on the derivative of
the Lagrangian, thus:

da, = 771—3% = 771(—;(&-— ai)K(x,, x,-)—s+yk>,

Say = gj;; = ﬂz(—z‘(ai—a?)K(xk, xi)—s—yk)-
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By the way, we will enforce the constraints @;>0, a;>0 by setting «;—0, a! =0 for
those @;'s and a;’s which would become negative. Let us consider the change in this

Lagrangian due to an updating @, —a@,+ 6e, and @, —ar+ da; for a particular kth
pattern:
SL = L(a{”+6al”) — L(a{”)

= O‘\ak(—]g(dj‘— (Z;)K(xk, x,—) - E+yk) + 6\0’;(12(611‘ — a;)K(xk, x,») - e—yk)

- Jz‘[@(a’k— a’;)]ZK(xk, x4,

where aé*) means a, and aj. For simplicity, we put 7, = 7,. Since SVR solution does not

depend very much on the type of kernel, we choose Gaussian kernel

x — 2

K(x, y) = exp{— 5 } in this paper. Then the change 8L can be simplified into

SL = p[2c5+2yi—dcrye+ 267 — %772[4ci+4yi—8ckyk]

= 2(ce — ) (7 — 7°) + 2pe?,

where
Cr = Z" (e; — ai)K(x4, x;)

and this ¢, becomes the estimate of y,. Now we can optimize 6L with respect to 7
giving:
1 &
n= 5+ 7.
2 (Ck - Y/e)z
In general, the optimal value for the learning rate # is pattern dependent. We notice that 7
becomes equal to 0.5 when &= 0. Furthermore, 7 tends to become large when e)>0 so

that ¢, can estimate well y,.

2. Simulation

We compare KA with neural networks using standard backpropagation(BP) and robust
backpropagation(RBP) by Chen & Jain(1994), and projection pursuit regression(PPR) for five
bivariate nonlinear functions g(j ). [0,1]— R in Hwang et al.(1994). We use simulated
examples so that we may compare the fits on a sizable test set. OQur metric for comparison is

the fraction of variance unexplained(FVU), which is defined as
2 (2(x) — g(x))?

FVU = —
Sglx) — g(x))?
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where g(x;) is the true value of the function and §(x,~) is the fitted value. We evaluate

the FVU for a fit by replacing the expectation with averages over a set of 10,000 test set
values. We use 225 pairs of predictors drawn uniformly from the unit square. In the noiseless

examples, the response is simply the value of the function g(x;;, x5;), while in the noisy

examples the response is g(x);, x5;) + 0.25¢;, where the errors e; are iid N(0,1). The
functions are given in Hwang et al.(1994).

Even for KA C, € and o should be pre-specified. Here, we choose same C=10,

7=0.5, e=0 for five functions. However, ¢'s are different. The value of ¢ for g(l) and

@ and g(S) is 0.2. We determined these all parameter

g(Z) is 04. And o for g(g), g
values using model selection methods based on VC-dimension. For model selection see
Shao(1999). The number of iterations of KA is 1,000. It was enough to get good estimates.
Table 1 presents the simulation results on this example. In our simulation study, PPR and KA
have quite comparable training speed, and RBP and KA achieve comparable accuracy for
test data. Overall KA shows good performance. In particular, KA does fitting very well for
nosy data. It will be important to make a careful comparative evaluation of RBP, PPR and

KA for a set of higher dimensional functions.
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Table 1. Accuracy determined by the error measure FVU

Noiseless Data Noisy Data
Function| Method |No. of |FVU train| FVU test |No, of |[FVU train| FVU test
Node Node
g(1) BP 5 0.000534 | 0.001471 5 0.064836 | 0.070192
10 0.000227 | 0.001338 10 0.064651 | 0.072336
RBP 5 0.000534 | 0.001266 5 0.064836 | 0.007300
10 0.000227 | 0.001285 10 0.064651 | 0.007984
PPR 3 0.000075 | 0.001077 3 0.053925 | 0.080629
5 0.000048 | 0.001095 5 0.050652 | 0.080352
KA 0.000297 | 0.001632 0.005243 | 0.008412
g(2) BP 5 0.005934 | 0.007648 5 0.068849 | 0.083526
10 0. 003537 | 0.005400 10 0.058644 | 0,073024
RBP 5 0.005949 | 0.006711 5 0.068866 | 0.023277
10 0.003537 | 0.005127 10 0.058375 | 0.014247
PPR 3 0.025906 | 0.034620 3 0.057967 | 0.082920
5 0.001163 | 0.006069 5 0.058581 | 0.084407
KA 0.000356 | 0.004492 0.006249 | 0.013994
g(3) BP 5 0.524021 | 0.424022 5 0. 399383 | 0. 566565
10 0.142020 | 0.151487 10 0.146998 | 0.231935
RBP 5 0.567275 | 0.495448 5 0.401656 | 0.472818
10 0.142935 | 0.132279 10 0.147073 | 0.169004
PPR 3 0.360373 | 0.577145 3 0.185445 | 0.321773
5 0.112422 | 0.242643 5 0.138678 | 0.341155
KA 0.012061 | 0.130577 0.028167 | 0.104874
g(4) BP 5 0.0453845 | 0.019688 5 0.073419 | 0. 086255
10 0.004273 | 0.006913 10 0.059601 | 0.075581
RBP 5 0.015946 | 0.019215 5 0.073427 | 0.025834
10 0.004283 | 0.005262 10 0.061691 | 0.015751
PPR 3 0.000389 | 0.000692 3 0.041929 | 0.091219
5 0.000427 | 0.001915 5 0.038907 | 0.089882
KA 0.000589 | 0.008519 0.017026 | 0.055434
g(5) BP 5 0.214445 | 0.236293 5 0.249337 | 0.286426
10 0.025470 | 0.070035 10 0.096857 | 0.138735
RBP 5 0.214724 | 0.234898 5 0.262230 | 0.260099
10 0.025487 | 0.065402 10 0.099910 | 0.086531
PPR 3 0.140191 | 0.227764 3 0.294997 | 0.543458
5 0.016889 | 0.038313 5 0.060511 | 0.192520
KA 0.001209 | 0.030118 0.019193 | 0.024875




