• 제목/요약/키워드: Support vector classifier

검색결과 355건 처리시간 0.035초

Fuzzy Twin Support Vector Machine 개발 및 전리층 레이더 데이터를 통한 성능 평가 (Development of Fuzzy Support Vector Machine and Evaluation of Performance Using Ionosphere Radar Data)

  • 천민규;윤창용;김은태;박민용
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.549-554
    • /
    • 2008
  • Support Vector Machine(SVM)은 통계적 학습 이론에 기반을 둔 분류기이다. 또한 Twin Support Vector Machine(TWSVM)은 이진 SVM 분류기의 한 종류로써, 서로 관련된 두 개의 SVM 유형 문제를 통해 평행하지 않은 두개의 평면을 결정하고 이 두 평면을 통해 분류기를 완성하는 방식이다. 이러한 방식의 TWSVM은 학습 시간이 SVM에 비해 훨씬 짧으며, SVM과 비교하여 떨어지지 않는 성능을 보여준다. 본 논문은 분류기 입력에 Fuzzy Membership을 적용하는 방식의 TWSVM을 제안하고, 전리층 레이더 데이터를 이용한 실험을 통하여 기존에 세시 되었던 분류기와 비교한다.

Modifying linearly non-separable support vector machine binary classifier to account for the centroid mean vector

  • Mubarak Al-Shukeili;Ronald Wesonga
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.245-258
    • /
    • 2023
  • This study proposes a modification to the objective function of the support vector machine for the linearly non-separable case of a binary classifier yi ∈ {-1, 1}. The modification takes into account the position of each data item xi from its corresponding class centroid. The resulting optimization function involves the centroid mean vector, and the spread of data besides the support vectors, which should be minimized by the choice of hyper-plane β. Theoretical assumptions have been tested to derive an optimal separable hyperplane that yields the minimal misclassification rate. The proposed method has been evaluated using simulation studies and real-life COVID-19 patient outcome hospitalization data. Results show that the proposed method performs better than the classical linear SVM classifier as the sample size increases and is preferred in the presence of correlations among predictors as well as among extreme values.

입자군집 최적화를 이용한 SVM 기반 다항식 뉴럴 네트워크 분류기 설계 (Design of SVM-Based Polynomial Neural Networks Classifier Using Particle Swarm Optimization)

  • 노석범;오성권
    • 전기학회논문지
    • /
    • 제67권8호
    • /
    • pp.1071-1079
    • /
    • 2018
  • In this study, the design methodology as well as network architecture of Support Vector Machine based Polynomial Neural Network, which is a kind of the dynamically generated neural networks, is introduced. The Support Vector Machine based polynomial neural networks is given as a novel network architecture redesigned with the aid of polynomial neural networks and Support Vector Machine. The generic polynomial neural networks, whose nodes are made of polynomials, are dynamically generated in each layer-wise. The individual nodes of the support vector machine based polynomial neural networks is constructed as a support vector machine, and the nodes as well as layers of the support vector machine based polynomial neural networks are dynamically generated as like the generation process of the generic polynomial neural networks. Support vector machine is well known as a sort of robust pattern classifiers. In addition, in order to enhance the structural flexibility as well as the classification performance of the proposed classifier, multi-objective particle swarm optimization is used. In other words, the optimization algorithm leads to sequentially successive generation of each layer of support vector based polynomial neural networks. The bench mark data sets are used to demonstrate the pattern classification performance of the proposed classifiers through the comparison of the generalization ability of the proposed classifier with some already studied classifiers.

The Classification of Electrocardiograph Arrhythmia Patterns using Fuzzy Support Vector Machines

  • Lee, Soo-Yong;Ahn, Deok-Yong;Song, Mi-Hae;Lee, Kyoung-Joung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권3호
    • /
    • pp.204-210
    • /
    • 2011
  • This paper proposes a fuzzy support vector machine ($FSVM_n$) pattern classifier to classify the arrhythmia patterns of an electrocardiograph (ECG). The $FSVM_n$ is a pattern classifier which combines n-dimensional fuzzy membership functions with a slack variable of SVM. To evaluate the performance of the proposed classifier, the MIT/BIH ECG database, which is a standard database for evaluating arrhythmia detection, was used. The pattern classification experiment showed that, when classifying ECG into four patterns - NSR, VT, VF, and NSR, VT, and VF classification rate resulted in 99.42%, 99.00%, and 99.79%, respectively. As a result, the $FSVM_n$ shows better pattern classification performance than the existing SVM and FSVM algorithms.

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

A Hybrid SVM-HMM Method for Handwritten Numeral Recognition

  • Kim, Eui-Chan;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1032-1035
    • /
    • 2003
  • The field of handwriting recognition has been researched for many years. A hybrid classifier has been proven to be able to increase the recognition rate compared with a single classifier. In this paper, we combine support vector machine (SVM) and hidden Markov model (HMM) for offline handwritten numeral recognition. To improve the performance, we extract features adapted for each classifier and propose the modified SVM decision structure. The experimental results show that the proposed method can achieve improved recognition rate for handwritten numeral recognition.

  • PDF

SVM 기반 전압안정도 분류 알고리즘 (A Support Vector Machine Based Voltage Stability Classifier)

  • 로델 도사노;송화창;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.477-478
    • /
    • 2007
  • This paper proposes a new concept of support vector machine (SVM) based voltage stability classifier using time-series phasor data. The classifier, based on a linear SVM, can provide very effective signals for identification of long-term voltage stability. In addition, the SVM output is applicable as an voltage stability indicator when an amount of corrective controls are performed just to make the system reach around at the maximum deliverable point.

  • PDF

Black-Box Classifier Interpretation Using Decision Tree and Fuzzy Logic-Based Classifier Implementation

  • Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2016
  • Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.

한국어 질의응답시스템을 위한 지지 벡터기계 기반의 질의유형분류기 ((A Question Type Classifier based on a Support Vector Machine for a Korean Question-Answering System))

  • 김학수;안영훈;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권5_6호
    • /
    • pp.466-475
    • /
    • 2003
  • 고성능의 질의응답 시스템을 구현하기 위해서는 사용자의 질의 의도를 파악할 수 있는 질의 유형 분류기가 필요하다. 본 논문에서는 지지 벡터 기계(support vector machine, SVM)를 이용한 질의유형 분류기를 제안한다. 본 논문에서 제안하는 질의 유형 분류기의 분류 과정은 다음과 같다. 우선, 사용자 질의에 포함된 어휘, 품사, 의미표지와 같은 다양한 정보를 이용하여 사용자 질의로부터 자질들을 추출한다. 다량의 자질들 중에서 유용한 것들만을 선택하기 위해서 카이 제곱 통계량을 이용한다. 추출된 자질들은 벡터 공간 모델로 표현되고, 문서 범주화 기법 중 하나인 지지 벡터 기계는 이 정보들을 이용하여 질의 유형을 분류한다. 본 논문에서 제안하는 시스템은 질의 유형 분류 문제에 자동 문서 범주화 기법을 도입하여 86.4%의 높은 분류 정확도를 보였다. 또한 질의 유형 분류기를 통계적 방법으로 구축함으로써 lexico-syntactic 패턴과 같은 규칙을 기술하는 수작업을 배제할 수 있으며, 응용 영역의 변화에 대해서도 안정적인 처리와 빠른 이식성을 보장한다.

Support Vector Machine (SVM) 기반 전압안정성 분류 알고리즘 (Support Vector Machine (SVM) based Voltage Stability Classifier)

  • 로델도사노;송화창;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.36-39
    • /
    • 2006
  • This paper proposes a support vector machine (SVM) based power system voltage stability classifier using local measurement data. The excellent performance of the SVM in the classification related to time-series prediction matches the real-time data of PMU for monitoring power system dynamics. The methodology for fast monitoring of the system is initiated locally which aims to leave sufficient time to perform immediate corrective actions to stop system degradation by the effect of major disturbances. This paper briefly describes the mathematical background of SVM, and explains the procedure for fast classification of voltage stability using the SVM algorithm. To illustrate the effectiveness of the classifier, this paper includes numerical examples with a 11-bus test system.

  • PDF