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Abstract - This paper proposes a support vector machine
{(SVM) based power system voltage stability classifier using
local measurement data. The excellent performance of the
SVM in the classification related to time-series prediction
matches the real-time data of PMU for monitoring power
system dynamics. The methodology for fast monitoring of
the system is initiated locally which aims to leave sufficient
time to perform immediate corrective actions to stop system
degradation by the effect of major disturbances. This paper
briefly describes the mathematical background of SVM, and
explains the procedure for fast classification of voltage
stability using the SVM algorithm. To illustrate the
effectiveness of the classifier, this paper includes numerical
examples with a 11-bus test system.

1. Introduction

With the advent of deregulated energy markets and the
growing desire to fully utilize existing transmission and
infrastructure, power system stability is becoming
complex and critical. This economical pressure on
electrical market forces the operation of power systems
and equipments to the limits of system capacity and
equipment performance. For these reasons, system
conditions are more exposed to instability due to greater
uncertainty in day to day system operations and increase
in the number of potential components for system
disturbances possibly resulting in voltage instability.
Thus the evolution of electric power operation towards
deregulation on electric markets introduces a necessity
for dynamic security assessment.

The integrated SCADA/EMS system is crucial for
current power system operation and its capability has
greatly improved during recent years. Obviously,
however, the SCADA/EMS system has a difficulty to
capture dynamic responses after severe disturbances
occur. To compensate this difficulty, phasor measurement
units (PMU) was devised and proposed {1] in the power
engineering field, which fulfill the requirement of fast
monitoring for the view of dynamic responses. Time
series data from PMUs can effectively give the outsight
of system dynamics to system operators. Potentially, in
addition, they can provide system stability identification
through adequate data manipulation.

This paper focuses on local measurement based voltage
stability identification with- PMU data. Ref [2] and (3]
used Thevenin equivalent of the networks at a local bus
for determination of how close the system is to voltage
instability. The idea of them is based on comparison of
the estimated Thevenin impedance and load impedance at
a specific bus. This paper proposes a new methodology
for identification of local voltage stability using a linear
support vector machine (SVM) algorithm [4], which is
one of machine learning techniques, assuming that PMUs
are equipped at a specified location to capture the
trajectory of system responses. The approach would use
moving window to take snapshots of the continuous
graph of the system responses during a period of time,
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and employ the learning algorithm to classify the time
series of system state condition as stable or unstable.
Using the support vector representing the SVM
classification as the output of the classifier, test
time-series data can be characterized into stable or
unstable cases. In case study, numerical examples with a
11-bus test system are included, and Powertech TSAT
program [5] is applied to make learning samples and test
data.

2. Support Vector Machine

In this section, we consider the support vector machine
(SVM) for binary classification [4]. The linear support
vector machine is basically based on the hyperplane
classifier, or the linear separability. The optimum
separating hyperplane is a linear classifier with the
maximum margin for a given finite set of leamning
patterns.

2.1 Linear separable case
Suppose we have N training data points {(x1, y1), (xz,
ya),om, (xx, yn)} where x€R? and yiE{21}.
f(x) = sgn (w'x - b) (n
The hyperplane which have a maximum separating ma
rgin with respect to two classes is given by
H:y=wx-b=0 (2)
and the two hyperplanes parallel to it and with equal dis
tances are:
Hi'y=wx-b=+l for class (+1) (2a)
H::y=wx-b=-1 for class (-1) (2b)
with the condition that there are no data points between
H; and H: and the distance is maximized. These positive
data examples along H, and negative data examples
along H: are called support vectors. Support vectors
participate in the definition of the separating hyperplane.
Other example data can be removed and/or moved
around as long as they do not cross the planes H; and
He.
The problem formulation is as follows:
1.7
=w
min Sw w @
sty {wez;—b)2
Introducing Lagrange multipliers a, &, -,
e the res,ultmg Lagranglan function:

L{w,b,a) = —w w—zay, wez; —b)+ Ea )

Given a constrained optimization problem with a convex
cost function and linear constraints, a dual problem with
the Lagrange multipliers which provides the solution can
be formulated using Duality Theorem. That is by
maximizing the L(:) with respect to 4, subject to the
constraints that the gradient of L{-) with respect to the
primal variables w and b vanish:
8L/3w =0 and 8L/0b =10

o20, we hav
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and that ¢20. From these two conditions, we obtain:
‘ N

N
w= Zo‘iyimi (5) and Zalyi =0 6)

i=1 i=1

Substituting these into L(:) yields:
fi

Ly= izlai - %Zjaiajyiiji * T )
in which the primal variables are eliminated.

Computing &, w and the threshold b, the classification
of new object x can be determine by the following
equation:

flz)=sgn{w-z—0b)

y 8
sng ((Eaiyiz,v sz— b)

1=1

I

Note that the objective function and the solution, the
training vectors x; occurs only in the form of dot
product.

2.1 Linear non-separable case
Extending SVM applications for allowing noise, or
imperfect separable case which is commonly occurs in
real applications. The main purpose is to definitely
penalize the data points that cross the boundaries
between the hyper-planes H; and H: Introducing a
non-negative slack variables §20, so that
w'x - b > +1-4 for yi = +1 (9a)
w'x - b < -1+ for yi = -1 (9b)
and adding a penalty term to the objective function
yeilds:

N
o1 7
min Zw’w+ Cigzlfi
sty (wez,~b)+&-120
=20

Lagrange function of (9) by introducing Lagrange
multiplier @ and £ is as follows:

N
_ 1 7
L:—Q-w w+ CE&—

1=1

N N (10)
Z(aiyi (wez, —b)+&-1)+ Zﬂi&'
i=1 =1
The duality problem can be formulated as follows:
N
1
max Lp= Eai - 72 Q0 YT T
=1 i, (11)

N
s.t. Z oy, =0, 02 a s C
i=1
The only difference from the linear separable and linear
non-separable case is that, ¢ is now bounded above by C
instead of », The solution is the same for both cases to
find the solution (8).

3. SVM based Voltage Stability Classifier

The proposed algorithm used in this paper uses phasor
measurement units located locally to allow real-time
observations of dynamic responses and developing
disturbances of the system. In this way, the difficulties
of SCADA/EMS to analyze system dynamics can be
handled. A series of sets of data are contained in a
moving window containing previous and real-time data
thereby, tracking the system dynamics while storing its
previous state conditions. The ability to perform in an
event of infrastructure hardware failure or the lack of
communication links due to high investment cost which
gives burden for a wide area monitoring system are not
critical factors.

3.1 Choice of input data
In this study, bus voltage and load active power were

chosen as monitoring parameters in the determination of
power system stability. Bus voltage at the high voltage
side of the substation transformer is ideal to give
insights of the transmission and generation networks
condition since this value is not altered by tap-changing
transformer response. The minimum time required for tap
changer transformer (LTC) to complete one tap
movement is usually close to 5 seconds. Although LTC
are slow acting device, one way to ensure that the
proposed approach is not affected by LTC load
restoration is to choose data sampling time shorter.
Another input parameter used is the load active power
which indicates load behavior either increasing or
decreasing at specific time. The total load seen by bulk
power delivery transformer is a composition of large
number of individual loads consisting of components
without restoration dynamics as well as of components
with load restorations. Statistically, these aggregate loads
tend to be quite consistent, but these loads behave
differently at different time scales.

One advantage of using these parameters is that,
absolute value of bus voltage and load active power can
be easily obtain using substation monitoring instruments
and/or using real-time monitoring equipment like PMU.

3.2 Input data pre-conditioning

Assume that from PMUs we can obtain time series
data of all the required parameters that are needed here
with a certain sampling frequency. The input data sets
are classified into class (+1) for stable cases and class
(-1) for unstable cases. In this paper, TSAT is primarily
used to get the sampling data for emulation of real-time
measurement. That is, these data were input in the SVM
algorithm as to have almost as ideal with the actual
PMU measurements.

The input data are pre-conditioned using the formula,
(Xo~Xn)/Xn in order to normalize input data, where X can
be the parameters that are necessary in this approach,
and the subscripts o and n denote the initial and n-th
value of a parameter, respectively. Normalized value
insures a generalized input data whenever this study is
conducted in any bus of the power system. Every input
data is a combination of normalized values of V (bus
voltage) and P (load active power). We also assume that
data combinations are taken every 0.5 second, but this
sampling time can be modified.

3.3 Moving window in featured space

The moving window captures the behavior of the data
combinations. A certain number of successive data
combinations are contained in a window where used to
test the proposed algorithm which comprises one training
data. The next input data is taken from the next window
containing the previous data points that include another
new data point but exclude the first data point. The idea
of this approach is to let every input data contain
enough details of the system condition before and the
last data point as basis for the detection of system
instability and trajectory to system collapse. The process
of obtaining series input data are done in this manner as
shown in Fig. 1, thereby tracing the graph representing
the combination P and V for every 05 second.
Transforming every moving window data into input file
data for training and classification can be made base on
the required input data format of SVM light, which is
the learning algorithm used here in this paper.

3.4 Machine learning with SVM light

With a chosen reference to voltage instability
scenarios, assume that we have time trajectories both for
stable and unstable cases. Even for unstable cases, the
time trajectories can be divided into many window
frames depending on the sampling frequency and the
number of data in a window, and these data can be
characterized into stable or unstable cases. In this paper,
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if the portion of the trajectories in the a window is on
the upper PV curve, the window frame is considered
stable; otherwise, it is considered unstable.

Then, in this paper, SVM light, which is an
implementation of Vapnik’s Support Vector Machine [6],
is utilized for machine learning of voltage stability
identification, In SVM light, data taken from a moving
window are featured into a higher space dimension for
linear classification, and it has scalable memory
requirements and can handle problems with thousands of
support vectors efficiently. From this learming, we can
obtain the support vectors which can be used later to
classify another set of input data whose voltage stability
is not known yet.

L] 2 “ - ° 10 12

Fig. 1. Concept of moving windowing

4. Numerical Example

This section explains examples applying the SVM
based voltage stability classifier into a 11-bus test
system shown in Fig. 2.

O+ e

Fig. 2. 11-bus test system

4.1 Learning with SVM light
Using 35 input data for class (+1) and 35 input
data for class (-1) as training data, the classification
using SVM light program was performed. Verifying the
trained SVM light to classify test data containing 5 class
(+1) and 5 class (-1) data, the learning machine could
now distinguish or classify test data to its respective
classes. Further running this machine for classification of
different test data, where some of the test data are taken
from the nose of PV curve, some errors of classification
occurs. Data which are taken from the nose of the PV
curve are the most critical to classify. Increasing the
training data from 105 to 600 input data both for class
(+1) and (-1) makes the learning machine reliable in
classification of data even in a critical case. The
simulation result in the classifying is more accurate and
test data which are taken even from the nose of PV
curve are well classified.
Related studies conducted in this research can be
summarized as follows:
Increasing power system case scenario, thereby
increasing training data for SVM light to learn and
test the learning machine to classify accurately more
test data.
Cases of test data to classify after SVM light had
been well trained
a) test data which are located in critical points
(mostly on the nose of PV curves of various cases

scenarios).

b.) test data which are continuous points from the
same case scenario to track the point of collapse of
the system. (e.g. SVM might track the behavior of
power system stability which is stable at first few
windows and become unstable on the remaining
windows).

2. Update training data by including well classified data
taken in the critical points mostly on the nose of PV
curves). This would update training data to insure
SVM light is trained well for further data types.

3. Study the output of SVM light, which might be an
index to indicate direction of power system stability
trajectory and margin to system collapse.

4. Verify other SVM features like regression, kernel
type and others for the benefits of power system
stability study.

4.2 Results of simulations

Based on the result of this study, as the window data
contains more data points the more the SVM
couldclassify system stability as well as tracing the
direction of trajectory. These have been verified using 4
data, 10 data and 20 data point window. Preprocessing of
input data for stable and unstable case is observed so
that accurate class classification of training data is
obtained.

The algorithm is further simulated using the
11-bus test system considering different scenarios, like
ramping of load at bus 11 and an outage inone of the
line connecting bus 6 and 7. The graph of voltage at bus
10 and load active power at bus 11 areshown in Fig. 3.a,
3.b for stable cases and 3.c, 3.d for unstable cases.
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Fig. 3: Graph of (a) bus voltage (V), (b) load active power
(P) for stable and (c) bus voltage (V), (d) load active power
(P) for unstable case used for test data

Test data containing 35 data points both for stable and
unstable case obtained from this graphs were tested for
classification using trained SVM. The output of SVM is
now plotted with respect to time for stable and unstable
conditions. Considering system fast dynamics, in stable
case, the time where the system is unstable for a short
time and recovers and becoming stable again can be
track using the magnitude of SVM. This can be
demonstrated by Fig. 4.a and 4.b, showing the trajectory
of SVM magnitude for stable and unstable respectively.
The classification result of SVM test is 95.714%. 3 out
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of 70 test data were misclassified. The misclassifications
happens on unstable test data on the first 3 points as
seen in Fig. 4.b. This misclassified data for unstable case
might be actually belongs to the stable case and the
unstable case begins after the SVM output have crosses
the reference axis exactly at third point. The turning
point of the SVM output from positive to negative values
can represent the point of system voltage collapse. In an
event of misclassification, misclassified data are then
added as a new training data. This will make SVM
learned well and will helps in future classifications of
SVM of critical data near the point of voltage collapse.
Here, we have shown that the magnitude of SVM
outputs plotted with respective to time is capable of
tracking the direction of power system voltage stability
and margin to collapse.

During the occurrence of system contingency, system
begin to response and the graph of SVM outputwith
respect to time is noticeably going down. Both for stable
and unstable conditions have the same characteristics
only for stable case, it begin to stabilize after reaching a
specified magnitude. For unstable case, it keeps to go
down. Within this system condition transition, it is
evident here that in some cases the effect of system load
restoration can be observed.
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Fig. 4.a Plot of SVM output with respect to time for stable
case
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Fig. 4.b Plot of SVM output with respect to time for unstable
case

Another test is performed on the 11-bus system
without line outages. The load at bus 11 is gradually
increased to obtain the PV curve of the system at base
case. The network PV curve is shown in the Fig. 5. By
examining Fig. 5, PV curve reveals that the point of
voltage to collapse for this case occurs at the nose of
the curve. The upper portion of the curve relates stable
system condition and the lower portion for unstable
condition.

TSAT has a feature "ramping of load”ideal for this
purpose, thus providing our proposed algorithm a
continuous data for the complete scenario. The complete
continuous data points of this scenario are tested in the
proposed algorithm. The output of SVM is plotted with
respect to time of the occurrence of data which is shown
in Fig. 6.

The positive values of the output in the early stage
indicate the time when the system is stable. As the load
in bus 11 is increased, it reflects a corresponding
decrease of SVM output. The point where the magnitude
of SVM output crosses the reference axis indicates

almost exactly the point of voltage collapse of the
system. This has been further verified by
investigatingthe input data of the base scenario. After
crossing the reference axis, the values of SVM outputs
are negative indicating that the system is unstable. This
is due to the fact that the load is still increasing even
after reaching the point of voltage collapse. By using the
characteristics of this graph, we can track the direction
of system stability trajectory both for stable and unstable
case.The severity of voltage instability or stability is
related to the magnitude of SVM output.
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Fig. 5. The network base case PV curve of 11-bus system
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Fig. 6. SVM output of the base case scenario
5. Conclusions

In this paper, we introduced a new concept of power
system stability classification using local measurements
on dynamic trajectories. The support vector machine
(SVM) based classifier with PMU data can offer an
excellent performance in classification of handling the
information related to long-term dynamics. The results
with the classifier on the test system shows a promising
application of the proposed SVM-based voltage stability
classifier in the field of local monitoring and control of
power system.
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